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Preface

Aims and Audience

This book, which has grown out of research conducted by the author with J. Michael
Harrison in 1981, is designed to serve as a textbook for advanced undergraduate and
beginning graduate students who seek a rigorous yet accessible introduction to the mod-
ern financial theory of security markets. This is a subject that is taught in both business
schools and mathematical science departments, and it is also a subject that is widely and
extensively utilized in the financial industry. The derivatives industry has roughly $20
trillion in notional principal outstanding as this book goes to press, and the portfolio
management industry is probably even bigger. Mathematics play crucial roles in both
these areas. Consequently, financial practitioners (especially ‘rocket scientists,’ quants.
financial engineers, etc.) may find this book useful for their theoretical background.

The full theory of security markets requires knowledge of continuous time stochas-
tic process models, measure theory, mathematical economics, and similar prerequisites
which are generally not learned before the advanced graduate level. Hence a proper
study of the complete theory of security markets requires several years of graduate study
(or equivalent, sink or swim, experience). However, by restricting attention to discrete
time models of security prices it is possible to acquire an introduction without making
a big investment in the advanced mathematics. In fact, while living in a discrete time
world it is possible to learn virtually all of the important financial concepts. The purpose
of this book is to provide such an introductory study.

There is still a lot of mathematics in this book. The reader should be comfortable with
calculus, linear algebra, and probability theory that is based on calculus (but not neces-
sarily measure theory). Random variables and expected values will be playing important
roles. The book will develop important notions concerning discrete time stochastic pro-
cesses; prior knowledge here will be useful but is not required. Presumably the reader
Will be interested in finance and thus will come with some rudimentary knowledge of
stocks, bonds, options, and financial decision making. The last topic involves utility
theory, of course; hopefully the reader will be familiar with this and related topics of
introductory microeconomic theory. Some exposure to linear programming would be
advantageous, but those lacking this knowledge can make do with the appendix and
independent study.

The aim of this book is to provide a rigorous treatment of the financial theory while
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maintaining a casual style. There is an emphasis on computational examples, and exer-
cises are provided to check understanding and provide supplemental information. Read-
ers seeking institutional knowledge about securities, derivatives, and portfolio manage-
ment should look elsewhere, but those seeking a careful introduction to financial engi-
neering will find that this is a useful and comprehensive introduction to the subject.

Brief Summary of This Book

This book consists of seven chapters, each divided into a number of sections. Important
equations, fundamental statements, examples, and exercises are labeled with numbers
by chapter. For example, equation 2.1 is the first equation in chapter 2.

This summary will point out which subjects are most important, and why (usually
because I think something is of fundamental importance rather than a narrow result of
limited or temporary consequence). It will also indicate topics that are new, at least in
their treatment. Arguably, there are no new results in this book, but, like Monday morn-
ing quarterbacking, we can look backwards and see better ways to say and do things.
Hopefully, the book will successfully do this, thereby conveying a clear understanding
of some fundamental ideas about security markets.

The first two chapters are devoted to single period models. Most of the important con-
cepts in this book are introduced here, making sections 1.1.–1.5 and 2.1–2.3 especially
important. Section 2.4 is a modern treatment of the important mean-variance portfolio
analysis. Sections 1.6 and 2.5–2.7 are extensions and ventures into significant topics that
are a bit out of this book’s mainstream.

The rest of this book is devoted to multiperiod models. This builds on the single pe-
riod results, emphasizing what is new and different. The redundant material is kept con-
cise in order to spare the patience of the stronger reader (but such readers will still find it
worthwhile to refer to the first two chapters). Chapter 3 describes the basic elements of
securities market models and introduces important notions such as dividend processes
and the binomial model. Chapter 4 is devoted to derivatives, including forwards and
futures; all the sections here are of fundamental interest. Chapter 5 attends to optimal
consumption and investment problems. Sections 5.2 and 5.4 are the most important ones
here (of course I might be biased, for the ideas originated from my research in 1982 and
1986), because they deal with the risk neutral computational approach. Sections 5.5–5.8
are extensions and special cases.

Interest rate derivatives have become extremely important in recent years. Chap-
ter 6 is devoted to this subject, covering examples of key derivatives such as caps and
swaptiOns and explaining how discrete time interest rate models are used for derivative
valuation.

Chapter 7 provides a brief look at models with infinite sample spaces. This seemingly
innocuous extension leads to significant mathematical complications and technicalities,
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and so this chapter will be most appealing to readers whose interests lean in the direction
of abstract mathematics.

Suggested Readings

The aim here is to provide some suggestions for further study, not to give an account of
which researchers are responsible for specific results. Most of the references that will
be mentioned are books, and some of these have very comprehensive bibliographies of
old research. This discussion is for the reader who wishes to learn more mathematical
finance, not history.

I will begin with the prerequisites, starting with basic probability theory. Feller (1968,
1971) is a classic still worth reading. I used Olkm, Gleser, and Derman (1980) for
teaching probability courses in the 1970s and 80s. More recent texts on basic probability
theory include Ross (1997a), Karr (1993), and Pitman (1993). All these texts assume
the reader knows some calculus, but measure theory is not needed.

This book uses a lot of linear algebra and matrix theory, another subject where the
newer books are no better than a classic, namely, Gantmacher (1959). Nevertheless, here
are some newer books: Brown (1991), Roman (1992), Lay and Guardino (1997), and
Riess et al. (1997).

Growing out of linear algebra is the subject of linear programming, the problem of
maximizing or minimizing a linear objective function subject to some linear constraints.
The appendix provides a quick overview of this subject as well as a list of good refer-
ences. A closely related subject, quadratic programming, involves similar optimization
problems, differing only in that the objective function is a quadratic function. Even more
general are convex optimization problems, also called nonlinear programming problems,
where the objective function is not necessarily quadratic. Such problems arise in finance
when a portfolio manager seeks to maximize expected utility. Some good references
include Jeter (1986), Hayhurst (1987), Bazaraa (1993), and Rockafellar (1997).

One subject of mathematics that should not be ignored is introductory analysis. This
has to do with things like convergence, open and closed sets, functions, and limits.
The books by Bartle and Sherbert (1992), Mikusinski and Mikusinski (1993), Berbe-
rian (1994), and Browder et al. (1996) are Popular texts for this area.

Many of the preceding mathematical topics are covered in the introductions to the
mathematics that are useful in economics by Klein (1973), Cluang (1974), and Os-
taszewski (1993). These books are highly recommended, because while giving primary
emphasis to the mathematical tools, they also explain how the math is used in economics,
thereby providing some economic background for the study of financial markets. In this
same category, but focusing more narrowly on the application of optimization theory to
economics, is the book by Dixit (1990).

So much for the prerequisites. It is not necessary to be an expert in any of the preced-
ing areas, but you should be familiar with them.
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I now turn to three areas that are developed in this book and that the reader may wish
to investigate further. For discrete time stochastic processes (random walks, Bernoulli
processes, Markov chains, martingales, etc.) there are several introductory books to
choose from: Hoel, Port, and Stone (1972), Cinlar (1975), Karlin and Taylor (1975,
1981), Taylor and Karlin (1984), Ross (1995), (1997b), Kijima (1997) and Norris (1998).
At a more advanced level (some measure theory may be used) one should be aware of
the classics by Doob (1953), Neveu (1975) and Revuz (1984) as well as the more recent
books by Durrett (1991) and Williams (1991).

Another mathematical topic that is developed in this book is dynamic programming.
This has to do with the optimal control of a stochastic process. In the common situation
where the process is Markovian, this topic is called Markov decision theory. Here one
can do no better than look at the work by Bertsekas (1976). Denardo (1982). Whittle
(1982, 1983), and Puterman (1994).

Finally I come to financial economics. Until recently, most of the books on the theory
of security markets were written by finance professors and thus tended to emphasize eco-
nomic theory at the expense of probability modeling. Markowitz (1990) is the definitive
reference on single period portfolio management. Ingersoll (1987) and Duffie (1992)
provide good broad treatments of both discrete and continuous time models. Other books
containing some general treatments of discrete time models, but presented in an older
fashion, are Jarrow (1988), Huang and Litzenberger (1988), and Eatwell. Milgate. and
Newman (1989). Meanwhile, three excellent books with a narrower focus, namely, on
discrete and continuous time models of derivatives, are by Cox and Rubenstein (1985),
Hull (1993), and Jarrow and Turnbull (1996). Also worth looking at is the book by
Wilmott, Dewynne, and Howison (1993). which studies option pricing from the partial
differential equation perspective, and the one by Dixit and Pindyck (1994), which stud-
ies capital investment decisions by firms and thus covers some of the same ground as
one would when investing in securities.

In the last few years a variety of finance books have been written by mathematicians.
These tend to emphasize probabilistic rather than economic arguments. Luenberger
(1998) and Panjer et al. (1998) take very broad, introductory perspectives. Baxter and
Rennie (1996), Lamberton and Lapeyre (1996), Elliott and Kopp (1998), and Mikosch
(1998) provide good introductions to the continuous time theory after first developing
some discrete time theory. All of these might be sensible for a first year graduate course.

At a more advanced, research level, one can find comprehensive treatments by Duffie
(1988). Dothan (1990), Merton (1990), Musiela and Rutkowski (1997), Bingham and
Kiesel (1998), and Björk (1998). Korn (1997) and Karatzas and Shreve (1998) provide
advanced studies of optimal problems. Rebonato (1998) focuses on models of interest
rate derivatives.
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Final Remarks

The first two printings of this book had a number of typographical errors. These are
listed on my web page: www.uic.edu/˜srpliska. If you discover any errors in this printing,
please bring them to my attention by contacting me at: srpliska@uic.edu.

A solutions manual for all the exercises in this book has been prepared for instructors
who adopt this book for classroom use. Instructors should contact me about this, and I
will mail a copy free of charge.

Stanley R. Pliska
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Chapter 1

Single Period Securities Markets

1.1 Model Specifications

Single period models are obviously unrealistic representations of complex, time-varying,
random phenomena such as stock and bond prices. But they have the virtues of being
mathematically simple as well as being able to illustrate many of the important economic
principles associated with even the most complex, continuous time models. Hence single
period models are worth studying for introductory purposes.

The following elements of the basic, single period model are specified as data:

• Initial date t = 0 and terminal date t = 1, with trading and consumption possible at
these two dates.

• A finite sample space Ω with K < ∞ elements:

Ω = {ω1,ω2, . . . ,ωK}

Here each ω ∈ Ω should be thought of as a possible state of the world, the value
of which is unknown at time t = 0 but which becomes apparent to the investors at
time t = 1.

• A probability measure P on Ω, with P(ω) > 0 for all ω ∈Ω.

• A bank account process B = {Bt : t = 0,1}, where B0 = 1 and B1 is a random
variable1. The bank account process will be distinguished from the other securities
because its time t = 1 price B1(ω) will be assumed to be strictly positive for all
ω ∈Ω. Usually, in fact, B1 ≥ 1, in which case B1 should be thought of as the time
t = 1 value of the bank account when $1 is deposited at time t = 0 and r≡B1−1≥ 0
should be thought of as the interest rate. For many applications the quantities r and
B1 are taken to be deterministic scalars. If necessary for a particular application,
however, B1 can be a positive random variable with r violating the constraint r≥ 0.

1If X is a random variable, this means X is a real-valued function on the sample space Ω. In other words, we
know the value X(ω) for each state of the world ω ∈Ω.

1



2 CHAPTER 1. SINGLE PERIOD SECURITIES MARKETS

• A price process S = {S1 : t = 0,1}, where S1 = (S1(t),S2(t), . . . ,SN(t)), N < ∞,
and Sn(t) is the time t price of security n. For many applications these N risky
securities are stocks. The time t = 0 prices are positive scalars that are known
to the investors, whereas the time t = 1 prices are non-negative random variables
whose values become known to the investors only at time t = 1. When N = 1. it is
convenient to simply write St for the time t price.

Having specified all the data describing the model, the next step is to define several
quantities of interest. A trading strategy H = (H0,H1, . . . ,HN) describes an investor’s
portfolio as carried forward from time t = 0 to time t = 1. In particular, the scalar H0 is
the number of dollars invested in the savings account, and for n≥ 1 the scalar Hn is the
number of units of security n (for example, shares of stock) held between times 0 and 1.
In general, Hn can be positive or negative (negative means borrowing or selling short),
but sometimes there are constraints specified for the trading strategies to be admissible
(for example, Hn ≥ 0 for n≥ 1; that is, no short selling of the risky securities).

The value process V = {Vt : t = 0,1} describes the total value of the portfolio at each
point in time. By simple bookkeeping this is

Vt ≡ H0Bt +
N

∑
n=1

HnSn(t), t = 0,1

Note that the value process depends on the choice of the trading strategy H and that V1

is a random variable.
The gains process G is a random variable that describes the total profit or loss gen-

erated by the portfolio between times 0 and 1. Since Hn(Sn(1)−Sn(0)) is the net profit
due to investment in the nth security (similarly for the bank account), the gains process
is

G≡ H0r +
N

∑
n=1

Hn∆Sn

where, by standard notation, ∆Sn ≡ Sn(1)−Sn(0).
A simple calculation verifies that

V1 = V0 +G (1.1)

Hence equation (1.1) says that any change in the value of the portfolio must be due to a
profit or loss in the investment and not, for example, due to the addition of funds from
an outside source.

The movement of the security prices relative to each other will be important to study,
so it is convenient to normalize the prices in such a way that the bank account becomes
constant. In other words, we are going to make the bank account the numeraire. We
do this by defining the discounted price process S∗ = {S∗t : t = 0,1} by setting S∗t ≡
(S∗1(t), . . . ,S

∗
N(t)) and

S∗n(t)≡ Sn(t)/Bt , n = 1, . . . ,N; t = 0,1
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the discounted value process V ∗ = {V ∗
t : t = 0,1} by

V ∗
t ≡ H0 +

N

∑
n=1

HnS∗n(t), t = 0,1

and the discounted gains process G∗ by the random variable

G∗ ≡
N

∑
n=1

Hn∆S∗n

where, as one should guess, ∆S∗n ≡ S∗n(1)− S∗n(0). With some more elementary book-
keeping, one eventually obtains

V ∗
t = Vt/Bt , t = 0,1 (1.2)

as well as the discounted counterpart of equation (1.1), namely,

V ∗
1 = V ∗

0 +G∗ (1.3)

Example 1.1. Suppose K = 2, N = 1, r = 1/9, S0 = 5, S1(ω1) = 20/3 and S1(ω2) =
40/9. Then B1 = 1 + r = 10/9, S∗1(ω1) = 6, and S∗1(ω2) = 4. For an arbitrary trading
strategy H we have V0 = V ∗

0 = H0 +5H1 as well as

V1 = (10/9)H0 +H1S1 V ∗
1 = H0 +H1S∗1

G = (1/9)H0 +H1(S1−5) G∗ = H1(S∗1−5)

Hence in state ω1

V1 = (10/9)H0 +(20/3)H1 V ∗
1 = H0 +6H1

G = (1/9)H0 +(5/3)H1 G∗ = H1

whereas in state ω2

V1 = (10/9)H0 +(40/9)H1 V ∗
1 = H0 +4H1

G = (1/9)H0− (5/9)H1 G∗ =−H1

It is easy to verify that equations (1.1) to (1.3) hold for both ω ∈Ω.

Example 1.2. With everything else the same as in example 1.1, take K = 3 and set
S1(ω3) = 30/9, so that S∗1(ω3) = 3. The other quantities of interest are left to the reader.
Although this was a simple modification, it will be shown later that we have substantially
changed the character of this model.

Example 1.3. For a simple model featuring two risky securities, suppose K = 3, r = 1/9
and the price process is as follows:

n Sn(0) Sn(1)
ω1 ω2 ω3

1 5 60/9 60/9 40/9
2 10 40/3 80/9 80/9
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It follows that the discounted price process is given by

n S∗n(0) S∗n(1)
ω1 ω2 ω3

1 5 6 6 4
2 10 12 8 8

The other quantities of interest are left to the reader.

Example 1.4. Again, and as will be shown later, a small modification will create a model
having substantially different character. With everything else the same as in example 1.3,
we take K = 4 and set the prices in state ω4 to be S1(1) = 20/9 and S2(1) = 120/9. Now
the discounted price process is:

n S∗n(0) S∗n(1)
ω1 ω2 ω3 ω4

1 5 6 6 4 2
2 10 12 8 8 12

Exercise 1.1. Verify (1.2).

Exercise 1.2. Verify (1.3).

Exercise 1.3. Specify V , V ∗, G and G∗ for

(a) Example 1.2

(b) Example 1.3

(c) Example 1.4

1.2 Arbitrage and other Economic Considerations

In order for the single period model to be reasonable from the economic standpoint,
it must satisfy various criteria. For example, the model would be unreasonable if the
investors were certain to be able to make a profit on a transaction, without any risk of
losing money or even of failing to make a gain. Such would be the case if there existed
a dominant trading strategy.

A trading strategy Ĥ is said to be dominant if there exists another trading strategy,
say H̃, such that V̂0 = Ṽ0 and V̂1(ω) > Ṽ1(ω) for all ω ∈Ω. In other words, both trading
strategies start with the same amount of money, but the dominant one is certain to end
up with more.

If H is a trading strategy satisfying V0 = 0 and V1(ω) > 0 for all ω ∈ Ω, then H is
dominant because it dominates the strategy which starts with zero money and does no
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investment at all. Conversely, if the trading strategy Ĥ dominates the trading strategy
H̃, then by defining a new trading strategy H = Ĥ− H̃ it follows by the linearity in the
definition of V that V0 = V̂0−Ṽ0 = 0 and V1(ω) = V̂1(ω)−Ṽ1(ω) > 0 for all ω ∈Ω. In
other words, the following is true:

There exists a dominant trading strategy if and only if there exists a trading
strategy satisfying V0 = 0 and V1(ω) > 0 for all ω ∈Ω.

(1.4)

Note that the condition in (1.4) is unreasonable from the economic standpoint; an
investor starting with zero money should not have a guaranteed way of ending up with a
positive amount of money. Hence a securities market model having a dominant trading
strategy cannot be a realistic one.

Not surprisingly, if there exists a dominant trading strategy, then there exists a trading
strategy which can transform a strictly negative initial wealth into a non-negative wealth.
To see this, suppose H satisfies the condition in (1.4). Then by (1.2) and the fact that
Bt > 0, one has V ∗

0 = 0 and V ∗
1 (ω) > 0 for all ω ∈Ω. So by (1.3), (H1, . . . ,HN) must be

such that G∗(ω) > 0 for all ω ∈Ω. Now define a new strategy H by setting H̃n = Hn for
n = 1, . . . ,N and

H̃0 =−
N

∑
n=1

HnS∗n(0)−δ

where
δ ≡min

ω
G∗(ω) > 0

It follows from the definition of Ṽ ∗
t that Ṽ ∗

0 = −δ < 0 and Ṽ ∗
t (ω) = Ṽ ∗

0 + G̃∗(ω) =
−δ + G̃∗(ω)≥ 0 for all w ∈Ω. Hence by (1.2), again, H̃ is as desired.

Conversely, suppose there is a trading strategy such as H̃. Then by reversing the
preceding argument one sees that (H̃1, . . . , H̃N) is such that G̃∗(ω) > 0 for all ω ∈ Ω.
Hence upon setting Hn = H̃n for n = 1, . . . ,N and

H0 =−
N

∑
n=1

H̃nS∗n(0)

it follows that the new trading strategy H satisfies V0 = 0 and V1(ω) > 0 for all ω ∈ Ω.
In view of (1.4), this means there is another equivalent condition:

There exists a dominant trading strategy if and only if there exists a trading
strategy satisfying V0 < 0 and V1(ω)≥ 0 for all ω ∈Ω.

(1.5)

The existence of a dominant trading strategy is unsatisfactory from another stand-
point: it leads to illogical pricing. For reasons which will soon become clear, it is often
useful to interpret V1(ω) as the time t = 1 payoff of a contract or claim when state co
pertains, in which case V0 can be interpreted as the time t = 0 price of this claim. But if
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the trading strategy Ĥ dominates H̃, then the contingent claims V̂ and Ṽ have the same
prices even though the former claim has a strictly greater payoff in every state ω . This
is not consistent with reality.

The pricing of claims will be logically consistent if there is a linear pricing measure,
that is, a non-negative vector π = (π(ω1), . . . ,π(ωK)) such that for every trading strategy
H you have

V ∗
0 = ∑

ω
π(ω)V ∗

1 (ω) = ∑
ω

π(ω)V1(ω)/B1(ω)

Now the illogical pricing associated with dominant trading strategies no longer exists;
each claim has a unique price, and a claim that pays more than another in every state
will have a higher time t = 0 price.

If there is a linear pricing measure π , then by its definition and that of V ∗
t one has

H0 +
N

∑
n=1

HnS∗n(0) = ∑
ω

π(ω)

[
H0 +

N

∑
n=1

HnS∗n(1)(ω)

]
(1.6)

Taking H1 = . . . = HN = 0, it can be seen that the linear pricing measure must satisfy
π(ω1)+ · · ·+π(ωK) = 1; thus one can interpret π as a probability measure on the sample
space Ω. Taking for arbitrary i ∈ {1, . . . ,N} a trading strategy with Hn = 0 for all n 6= i,
one sees that this equation implies

S∗n(0) = ∑
ω

π(ω)S∗n(1)(ω), n = 1, . . . ,N (1.7)

Conversely, suppose π is a probability measure on Ω satisfying (1.7). Then (1.6) is
satisfied, and it follows that:

The vector π is a linear pricing measure if and only if it is a probability
measure on Ω satisfying (1.7).

(1.8)

Since a linear pricing measure π can be taken to be a probability measure, (1.7) says
that the initial price of each security is equal to the expectation2 under it of the final
discounted price. Similarly, by the original definition of π , the initial value V0 of any
portfolio is equal to the expectation under π of the final discounted value of the portfolio.

It turns out there exists a close relationship between the concepts of dominant trading
strategies and linear pricing measures:

There exists a linear pricing measure if and only if there are no dominant
trading strategies.

(1.9)

2The expected value (also called the mean or average) of the random variable X is denoted EX or E[X ] and
defined to be

EX ≡
K

∑
k=1

X(ωk)P(ωk)

More generally, if f is a real-valued function on the real line,

E f (X)≡
K

∑
k=1

f
(
X(ωk)

)
P(ωk)

In particular, for scalars a and b, E[aX +b] = aEX +b.
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This important principle can be verified with linear programming duality theory.3 In
particular, let π ∈ RK be a column vector, let Z ∈ RN+1 denote the column vector

Z =




S∗1(0)
...

S∗N(0)
1




and let Z denote the (N +1)×K matrix

Z≡




S∗1(1,ω1) · · · S∗1(1,ωK)
...

...
S∗N(1,ω1) · · · S∗N(1,ωK)

1 · · · 1




Then by (1.8) the existence of a linear pricing measure implies the existence of a solution
to the linear program

maximize (0, . . . ,0)π
subject to Zπ = Z

π ≥ 0.

(1.10)

By duality theory there must exist a solution h = (h1, . . . ,hN+1) to the dual linear pro-
gram

minimize hZ

subject to Zπ ≥ 0
(1.11)

and the two optimal objective values must coincide (in which case they obviously equal
zero). Now interpret the solution h of (1.11) as a trading strategy, with the last com-
ponent of h corresponding to H0. The objective function in (1.11) says that V ∗

0 = 0,
whereas the constraint says that V ∗

1 (ω)≥ 0 for all ω ∈Ω. Since the minimizing strategy
h has an objective value equal to zero, there cannot be any trading strategies with V0 < 0
and V1(ω) ≥ 0 for all ω ∈ Ω. Hence by (1.5) the existence of a linear pricing measure
implies there cannot be any dominant trading strategies.

Conversely, if there are no dominant trading strategies, then (1.11) has a solution,
namely, h = 0. It follows by duality theory that (1.10) has a solution π which, as ex-
plained above, can be taken as the linear pricing measure.

To summarize matters up to this point, securities market models that permit domi-
nant trading strategies are unreasonable from the economic point of view. Moreover,
models without dominant strategies are reasonable, it would seem, because they are ac-
companied by linear pricing measures. Hence it makes sense to concentrate attention
on the latter kind of model. But before agreeing to drop from consideration all models

3See the appendix on linear programming.
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with dominant trading strategies, it is worth mentioning that one can have an even less
reasonable securities market model.

It is said that the law of one price holds for a securities market model if there do not
exist two trading strategies, say Ĥ and H̃, such that V̂1(ω) = Ṽ1(ω) for all ω ∈ Ω but
V̂0 > Ṽ0. In other words, if the law of one price holds, then there is no ambiguity about
the time t = 0 price of any claim. On the other hand, the law of one price does not
hold if there are two different trading strategies that yield the same time t = 1 payoff
but the initial values of the two corresponding portfolios are different. This notion was
mentioned above, just following principle (1.5).

Notice that if there do not exist two distinct trading strategies yielding the same payoff
at time 1, then automatically the law of one price holds. On the other hand, if Ĥ and
H̃ are as in the preceding paragraph, then V̂ ∗

1 = Ṽ ∗
1 and V̂ ∗

0 > Ṽ ∗
0 which, in turn, imply

Ĝ∗(ω) < G̃∗(ω) for all ω ∈Ω. Defining a new trading strategy H by taking Hn = H̃n−
Ĥn, for n = 1, . . . ,N yields G∗(ω) > 0 for all ω ∈ Ω. Finally, taking H0 =−∑HnS∗n(0)
leads to V0 = 0 and V1(ω) > 0 for all ω ∈Ω. Hence by (1.4) the following is true:

If there are no dominant trading strategies, then the law of one price holds.
The converse, however, is not necessarily true.

(1.12)

In other words, if the law of one price fails to hold, then there will exist a dominant
trading strategy. The converse is not necessarily true, because, as will be illustrated in
example 1.5 that follows, you can have a dominant trading strategy for a model that
satisfies the law of one price. Thus failure of the law of one price is, in a sense, worse
than having dominant trading strategies.

Example 1.5. For a trivial example where the law of one price fails to hold, suppose
K = 2, N = 1, r = 1, S0 = 10, and S1(ω1) = S1(ω2) = 12. Hence V1 is constant on Ω,
and for any scalar λ there is an infmite number of trading strategies with V1 = λ , each
of which has a different value of V0.

Now suppose S1(ω2) is changed to the value 8. For any X ∈ R2 there is a unique H
(and thus a unique time t = 0 price) such that V1 = X , so the law of one price must hold.
However, the trading strategy H = (10,−1) satisfies V0 = 0 and V1 = (8,12), so it must
be a dominant trading strategy.

Returning to the category of models that are without dominant trading strategies, it
is clear that such models cannot have trading strategies that start with zero wealth and
are certain to have a strictly positive amount of wealth at time t = 1. But what about
trading strategies that start with zero wealth, cannot lose any money, and end up with a
strictly positive amount of wealth at time t = 1 in at least one of the states ω , but not all?
In other words, investors would have the possibility of being able to make a profit on
a transaction without being exposed to the risk of incurring a loss. Such an investment
opportunity is called an arbitrage opportunity, and it is unreasonable from the economic
standpoint.
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Formally, an arbitrage opportunity is some trading strategy H such that

(a) V0 = 0.

(b) V1 ≥ 0, and

(c) EV1 > 0.

Note that an arbitrage opportunity is a riskless way of making money: you start with
nothing and, without any chance of going into debt, there is a chance of ending up with
a positive amount of money. If such a situation were to exist, then everybody would
‘jump in’ with this trading strategy, affecting the prices of the securities. This economic
model would not be in equilibrium. Hence for our single period model to be sensible
from the economic standpoint, there cannot exist any arbitrage opportunities.

The following principle is true by (1.4) and example 1.6, which follows.

If there exists a dominant trading strategy, then there exists an arbitrage
opportunity, but the converse is not necessarily true.

(1.13)

Example 1.6. Suppose K = 2, N = 1, r = 0, S0 = 10, S1(ω1) = 12, and S1(ω2) = 10
(with one stock, the subscript denotes time). The trading strategy H = (−10,1) is an
arbitrage opportunity, because V0 = 0 and V1 = (2,0). However, there are no dominant
trading strategies, because π = (0,1) is a linear pricing measure.

From (1.2) and the fact that Bt > 0 for all t and ω , it follows easily that H is an
arbitrage opportunity if and only if

(a) V ∗
0 = 0.

(b) V ∗
1 ≥ 0, and

(c) EV ∗
1 > 0.

In fact, there is still another equivalent condition:

H is an arbitrage opportunity if and only if

(a) G∗ ≥ 0, and

(b) EG∗ > 0.

(1.14)

To see this, suppose H is an arbitrage opportunity. By (1.3), G∗ = V ∗
1 −V ∗

0 , so by the
preceding remark G∗ ≥ 0 and EG∗ = EV ∗

1 −EV ∗
0 = EV ∗

1 > 0. Conversely, suppose (a)
and (b) in (1.14) are satisfied by some trading strategy Ĥ. Then consider the strategy
H = (H0, Ĥ1, . . . ĤN), where

H0 =−
N

∑
n=1

ĤnS∗n(0)

Under H one has V ∗
0 = 0. Moreover, by (1.3) one has V ∗

1 = V ∗
0 + G∗ = G∗. Hence (a)

and (b) in (1.14) imply V ∗
1 ≥ 0 and EV ∗

1 > 0, in which case H is an arbitrage opportunity
by the preceding remark.
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Figure 1.1: Classification of securities market models

In summary, and as illustrated in figure 1.1, all single period securities market models
can be classified into four categories: (1) there are no arbitrage opportunities, (2) there
are arbitrage opportunities but no dominant trading strategies, (3) there are dominant
trading strategies but the law of one price holds, and (4) the law of one price does not
hold. And only the first category is reasonable from the economic point of view.

Unfortunately, it is not so easy to check directly whether a model has any arbitrage
opportunities, at least when there are two or more risky securities. But there is an impor-
tant necessary and sufficient condition for the model to be free of arbitrage opportunities.
This condition involves the discounted price process and something called a risk neutral
probability measure, which is a special kind of linear pricing measure. It will be the
subject of the next section.

Exercise 1.4. Consider the model with K = 3, N = 2, r = 0, and the following security
prices:

n Sn(0) Sn(1)(ω1) Sn(1)(ω2) Sn(1)(ω3)
1 4 8 6 3
2 7 10 8 4

Show that there exist dominant trading strategies and that the law of one price holds.

Exercise 1.5. Show for example 1.3 that there are no dominant trading strategies but
there exists an arbitrage opportunity.

dell
附注
作业
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1.3 Risk Neutral Probability Measures

In the preceding section it was explained that if there exists a linear pricing measure, then
there cannot be any dominant trading strategies, although there can still be arbitrage
opportunities. In order to rule out arbitrage opportunities, we need a little bit more:
there must exist a linear pricing measure which gives strictly positive mass to every state
ω ∈Ω.

A probability measure Q on Ω is said to be a risk neutral probability measure if

(a) Q(ω) > 0, all ω ∈Ω, and

(b) EQ[∆S∗n] = 0, n = 1,2, . . . ,N.

Here the notation EQ[X ] means the expected value of the random variable X under the
probability measure Q. Note that

EQ[∆S∗n] = EQ[S∗n(1)−S∗n(0)] = EQ[S∗n(1)]−S∗n(0),

so EQ[∆S∗n] = 0 is equivalent to

EQ[S∗n(1)] = S∗n(0), n = 1,2, . . . ,N (1.15)

This is essentially the same as (1.7) and says that under the indicated probability measure
the expected time t = 1 discounted price of each risky security is equal to its initial price.
Hence a risk neutral probability measure is just a linear pricing measure giving strictly
positive mass to every ω ∈Ω.

We now come to a very important result.

There are no arbitrage opportunities if and only if there exists a risk neutral
probability measure Q.

(1.16)

Before proving this result, it is worthwhile to look at some examples and provide some
intuition.

Example 1.1 (continued) We want to find strictly positive numbers Q(ω1) and Q(ω2)
so that (1.15) is satisfied, that is,

5 = 6Q(ω1)+4Q(ω2)

Also Q must be a probability measure, so it must satisfy

1 = Q(ω1)+Q(ω2)

It is easy to see that Q(ω1) = Q(ω2) = 1/2 satisfies both equations, so this is a risk
neutral probability measure, and by (1.16) there cannot be any arbitrage opportunities.

Of course, with this simple example it is easy to see from the discounted price pro-
cess that there cannot be any arbitrage opportunities. Indeed, principle (1.16) is easy
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to understand in the case where there is a single risky security (i.e., N = 1). From the
definition, there is an arbitrage opportunity if and only if one can take a position H1 in
the discounted price process S∗ that will possibly gain but cannot lose. This means that
either ∆S∗ ≥ 0 with ∆S∗(ω) > 0 for at least one ω ∈ Ω or ∆S∗ ≤ 0 with ∆S∗(ω) < 0
for at least one ω ∈ Ω. Clearly, in both cases it is impossible to find a strictly positive
probability measure satisfying (1.15). On the other hand, if neither of these two cases
applies, then one can find a risk neutral probability measure and there are no arbitrage
opportunities.

Example 1.2 (continued) The system of equations to be solved, namely,

5 = 6Q(ω1)+4Q(ω2)+3Q(ω3)

1 = Q(ω1)+Q(ω2)+Q(ω3)

involves three unknowns but only two equations, so we will solve for two of the un-
knowns in terms of the third, say Q(ω1). Thus this system will be satisfied for an arbi-
trary real number Q(ω1) if

Q(ω2) = 2−3Q(ω1) and Q(ω3) =−1+2Q(ω1)

Now for Q to be a strictly positive probability measure we must have Q(ωi) > 0 for
all i. Using the preceding two equations, this leads to three inequalities for Q(ω1), in-
cluding Q(ω1) > 0. In view of its equation, Q(ω2) > 0 if and only if Q(ω1) < 2/3.
Similarly, Q(ω3) > 0 if and only if Q(ω1) > 1/2. Hence our solution will be a strictly
positive probability measure if and only if 1/2 < Q(ω1) < 2/3. In other words, Q =
(λ ,2−3λ ,−1+2λ ) is a risk neutral probability measure for each value of the scalar λ
satisfying 1/2 < λ < 2/3, and there are no arbitrage opportunities.

Example 1.3 (continued) We seek a solution of

5 = 6Q(ω1)+6Q(ω2)+4Q(ω3)

10 = 12Q(ω1)+8Q(ω2)+8Q(ω3)

1 = Q(ω1)+Q(ω2)+Q(ω3)

There exists a unique solution to these equations, namely, Q(ω1)= Q(ω3)= 1/2, Q(ω2)=
0. This is a linear pricing measure, but this solution is not strictly positive, so there does
not exist a risk neutral probability measure. By (1.16), therefore, there must exist an ar-
bitrage opportunity. It takes a bit of work to find one; we will come back to this example
later.

Example 1.3 illustrates why the intuition which worked for the case of a single risky
security does not work when there are two or more risky securities. Looking at the dis-
counted price process for the first security, it is clear that we can find a strictly positive
probability measure Q satisfying EQ[S∗1(1)] = 5. Similarly for the second risky security.
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The problem, however, is that we cannot find a single strictly positive probability mea-
sure that will simultaneously work for both securities. The interactions between these
two securities permit arbitrage opportunities even though, taken individually, the secu-
rities seem acceptable. And it is these kinds of interactions which make the intuitive
understanding of principle (1.16) much more difficult when there are two or more risky
securities.

These three examples illustrate the three kinds of situations that can arise: either
(1) there is a unique risk neutral probability measure, (2) there are infinitely many risk
neutral probability measures, or (3) there are no risk neutral probability measures.

We now return to the explanation of (1.16) for the case where N ≥ 2. For a general,
single period model, consider the set

W=
{

X ∈ RK : X = G∗ for some trading strategy H
}

One should think of W as a set of random variables, and because of (1.3) one should
think of each X ∈W as a possible time t = 1 discounted wealth when the initial value of
the investment is zero. Note that W is actually a linear subspace of RK , that is, for any
X , X̂ ∈W and any scalars a and b one also has aX +bX̂ ∈W.

Next, consider the set

A≡ {
X ∈ RK : X ≥ 0,X 6= 0

}

This is just the non-negative orthant of RK . In view of (1.14) it is apparent that there ex-
ists an arbitrage opportunity if and only ifW∩A 6= /0, that is, if and only if the subspace
W intersects with the non-negative orthant of RK . Hence to find an arbitrage opportu-
nity in a model for which there is no risk neutral probability measure, one can use linear
algebra to characterize W quantitatively and then compute a vector in its intersection
with A.

Now corresponding to the subspaceW is the orthogonal subspace

W⊥ ≡ {
Y ∈ RK : X ·Y = 0 for all X ∈W}

where X ·Y = X(ω1)Y (ω1)+ . . .+X(ωK)Y (ωK) denotes the inner product of X and Y .
If you consider the geometric picture for the case K = 2 (see figure 1.2) or even the case
K = 3, it should be easy to believe that W∩A = /0 implies the existence of a ray in
W⊥ along which every component of every point not at the origin is strictly positive.4

In particular, along this ray there will exist one point whose components sum to one,
in which case this point can be interpreted as a probability measure. In other words,
denoting

P+ ≡ {
X ∈ RK : X1 + . . .+XK = 1,X1 > 0, . . . ,XK > 0

}

the geometry suggests thatW∩A= /0 if and only ifW⊥∩P+ 6= /0.
4In other words, for some Ŷ ∈W⊥ whose components are all strictly positive, the ray is of the form {Y ∈ RN :

Y = λŶ ,λ > 0,λ ∈ R}.
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Figure 1.2: Geometric interpretation of the risk neutral probability measures

Since ∆S∗n ∈W for all n, it follows that any element of the set W⊥ ∩P+ actually a
risk neutral probability measure. Conversely, if Q is any risk neutral probability measure,
then for any G∗ ∈W (with corresponding trading strategy H) we have

EQG∗ = EQ

[
N

∑
n=1

Hn∆S∗n

]
=

N

∑
n=1

HnEQ[∆S∗n] = 0 (1.17)

so Q ∈W⊥∩P+. Thus if we let denote the set of all risk neutral probability measures,
we have that

M=W⊥∩P+

Moreover, by the geometric intuition used above we conjecture that W∩A = /0 if and
only ifM 6= /0. This conjecture, of course, is the same as principle (1.16).

In order to make this argument more rigorous and apply it to the case of general
K, it is convenient to use a version of the Hahn-Banach theorem called the separating
hyperplane theorem. Consider the set

A+ = {X ∈ A : EX ≥ 1}
This is a closed and convex5 subset of RK , and the absence of arbitrage opportunities
impliesW and A+ are disjoint. Hence by the separating hyperplane theorem there exists
some Y ∈W⊥ such that X ·Y > 0 for all X ∈ A+. For each k = 1, . . . ,K we can find
a vector X in A+ whose kth component is positive and other components are zeros, so
every component of Y must be strictly positive. By setting Q(ωk) = Y (ωk)/[Y (ω1)+
. . .+Y (ωK)], it is clear that Q is a probability measure with Q ∈W⊥. Since ∆S∗n ∈W
for all n, we conclude that Q is a risk neutral probability measure.

5Closed means that if {X1} is a sequence of points in A+ that converges to some X ∈ RK , then X ∈ A+; convex
means that for any X , X̂ ∈ A+ and any scalar λ with 0 < λ < 1, then λX +(1−λ )X̂ ∈ A+.
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What about the converse of (1.16)? This is easy. If Q is a risk neutral probability
measure, then, as explained above, for an arbitrary trading strategy H we have equation
(1.17), which shows that G∗ cannot satisfy both G∗ ≥ 0 and EG∗ > 0. Hence by (1.14)
there cannot be any arbitrage opportunities. and so our conjecture and principle (1.16)
are verified.

Example 1.3 (continued) We want to compute W∩A, which we know is non-empty.
Knowing S∗n, one computes ∆S∗n, to be as follows:

n ∆S∗n(ω1) ∆S∗n(ω2) ∆S∗n(ω3)
1 1 1 −1
2 2 −2 −2

It follows that

W=
{

X ∈ R3 : X = (H1 +2H2,H1−2H2,−H1−2H2) for some H1,H2 ∈ R
}

Notice that X1 +X3 = 0 for all X ∈W. Conversely, given any vector X with X1 +X3 = 0,
one can readily find a unique trading strategy H with G∗ = X . Hence

W=
{

X ∈ R3 : X1 +X3 = 0
}

that is,
W⊥ =

{
Y ∈ R3 : Y = (λ ,0,λ ) for some λ ∈ R}

Now comparingW and A we see that

W∩A=
{

X ∈ R3 : X1 = X3 = 0,X2 > 0
}

So starting with any positive number X2, we compute the trading strategy H which gives
rise to the time t = 1 portfolio value (0,X2,0). This will be the solution of

H1 +2H2 = 0

H1−2H2 = X2

namely, H1 = X2/2 and H2 =−X2/4. Finally, upon setting

H0 =−H1S∗1(0)−H2S∗2(0) =−(X2/2)(5)− (−X2/4)(10),

one obtains H0 = 0. It is apparent that H = (0,X2/2,−X2/4) is an arbitrage opportunity
for every X2 > 0.

Exercise 1.6. Show thatW andW⊥ are linear subspaces.

Exercise 1.7. SpecifyW andW⊥ in the case of

(a) Example 1.1.

(b) Example 1.2.
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(c) Example 1.4.

Exercise 1.8. Determine either all the risk neutral probability measures or all the arbi-
trage opportunities in the case of example 1.4.

Exercise 1.9. Suppose K = 2, N = 1, and the interest rate is a scalar parameter r ≥ 0.
Also, suppose S0 = 1, S1(ω1) = u (‘up’), and S1(ω2) = d (‘down’), where the parameters
u and d satisfy u > d > 0. For what values of r, u, and d does there exist a risk neutral
probability measure? Say what this measure is. For the complementary values of these
parameters, say what all the arbitrage opportunities are.

Exercise 1.10. Let A denote the (K +1)× (K +2N) matrix



0 0 0 · · · 0 1 1 · · · 1
∆S∗1(ω1) −∆S∗1(ω1) −∆S∗2(ω1) · · · −∆S∗N(ω1) −1 0 · · · 0
∆S∗1(ω2) −∆S∗1(ω2) −∆S∗2(ω2) · · · −∆S∗N(ω2) 0 −1 · · · 0

...
...

...
...

...
...

...
∆S∗1(ωK) −∆S∗1(ωK) −∆S∗2(ωK) · · · −∆S∗N(ωK) 0 0 · · · −1




and let b denote the (K +1)-component column vector (1,0, . . . ,0)′. Show that

Ax = b, x≥ 0, x ∈ RK+2N

has a solution if and only if there exists an arbitrage opportunity.

Exercise 1.11. Farkas’s Lemma, a variation of the separating hyperplane theorem, says
that given an m×n matrix A and an m-dimensional column vector b, either

Ax = b, x≥ 0, x ∈ Rn

has a solution or
yA≤ 0, yb > 0, y ∈ Rm

has a solution, but not both. Use this and the results of exercise 1.10 to show that if there
are no arbitrage opportunities, then there exists a risk neutral probability measure.

1.4 Valuation of Contingent Claims

A contingent claim is a random variable X representing a payoff at time t = 1. You can
think of a contingent claim as part of a contract that a buyer and a seller make at time
t = 0. The seller promises to pay the buyer the amount X(ω) at time t = 1 if ω ∈Ω turns
out to be the true state of the world. Hence, when viewed at time t = 0, the payoff X is
a random variable, and so the problem of interest is to determine the time t = 0 value of
this payoff. In other words, what is the fair price that the buyer should pay the seller at
time t = 0 in order for the two parties to be happy with their contract?
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Now one might suppose that the value of a contingent claim would depend on the risk
preferences and utility functions of the buyer and seller, but in a great many cases this
is not so. It turns out that by the arguments of arbitrage pricing theory there is often a
unique, correct, time t = 0 value for the contingent claim, a value that does not depend
on the risk preferences of the parties who buy and sell this claim.

Here is the argument. A contingent claim X is said to be attainable or marketable if
there exists some trading strategy H, called the replicating portfolio, such that V1 = X .
In this case one says that H generates X . Now suppose the time t = 0 price p of X is
such that p > V0. Then an astute individual would sell the contingent claim for p at time
t = 0, follow the trading strategy H at a time t = 0 cost of V0. and pocket the difference
p−V0. This individual has made a riskless profit, because at time t = 1 the value V1 of
the portfolio corresponding to H is exactly equal to the obligation X of the contingent
claim in every state of the world. In other words, if p > V0. then this astute individual
could lock in a profit of p−V0 by investing in a portfolio that provides exactly the right
value to settle the obligation on the contingent claim.

Similarly, if p < V0, then an astute individual would follow the trading strategy −H,
thereby collecting the amount V0 at time t = 0, and purchasing the contingent claim
for the amount p. thereby locking in a risk free profit of V0− p. At time t = 1 the
amount collected X is exactly what is needed to settle the obligation V1 associated with
the trading strategy −H. Again, if p < V0, then this astute individual could lock in a
riskless profit of V0− p.

If p = V0, then apparently we cannot use H to create a riskless profit. So does this
mean that V0 is the correct value of X? Not necessarily, for suppose there is a second
trading strategy, say Ĥ, such that V̂1 = X but V̂0 6= V0. Then even if p = V0, one could
use Ĥ and the argument above to lock in a riskless profit, thereby implying the different
price V̂0. The problem here, of course, is that the law of one price does not hold. So for
V0 to be the unique, logical, time t = 0 price of K, it is necessary to assume that the law
of one price does indeed hold. In this case we say that V0 is the price of X as implied by
arbitrage pricing theory.

As explained in section 1.2, if there are no arbitrage opportunities, then there are no
dominant trading strategies, and if there are no dominant trading strategies, then the law
of one price holds. Thus by (1.16) the existence of a risk neutral probability measure
implies the law of one price. Alternatively, we can see this directly from the following,
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very important calculation:

If Q is any risk neutral probability measure, then for every trading strategy
H one has

V0 = V ∗
0 = EQV ∗

0 = EQ[V ∗
1 −G∗] = EQV ∗

1 −EQ

[
N

∑
n=1

Hn∆S∗n

]

= EQV ∗
1 −

N

∑
n=1

HnEQ[∆S∗n] = EQV ∗
1 −0 = EQV ∗

1 = EQ[V1/B1]

(1.18)

In other words, under Q the expected, discounted, time t = 1 value of any portfolio is
equal to its initial value. So if there is a positive probability that the portfolio will go up
in value, then there also must be a positive probability of going down in value, and vice
versa. Moreover, there is no way you can have two trading strategies H and Ĥ with both
V1 = V̂1 and V0 6= V̂0, so the law of one price must hold.

Notice for future reference that the calculation in (1.18) does not depend on the choice
of Q, because V ∗

1 is the time t = 1 discounted value of the portfolio under some trading
strategy. In other words, for a model where there are two or more risk neutral probability
measures, EQV ∗

1 is constant with respect to such Q.
Returning to the contingent claim X , by the arguments near the beginning of this

section we have the following important valuation concept:

If the law of one price holds, then the time t = 0 value of an attainable
contingent claim X is V0 = H0B0 + ∑N

n=1 HnSn(0), where H is the trading
strategy that generates X .

(1.19)

If we have the stronger condition that the model is free of arbitrage opportunities,
then we have the following, sensational result:

Risk neutral valuation principle: If the single period model is free of ar-
bitrage opportunities, then the time t = 0 value of an attainable contingent
claim X is EQ[X/B1], where Q is any risk neutral probability measure.

(1.20)

This follows immediately from (1.2), (1.18), (1.19), and the fact that B0 = 1. We now
turn to several examples.

Example 1.1 (continued) Suppose r = 1/9, X(ω1) = 7, and X(ω2) = 2. Then the
time t = 0 value of X is

EQ[X/B1] = (1/2)(9/10)7+(1/2)(9/10)2 = 4.05

providing X is attainable. How do we check this? One way is to try to compute the
trading strategy H that generates X . This can be done by solving

X/B1 = V ∗
1 = V ∗

0 +G∗ = 4.05+H1∆S∗1
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There is one unknown, H1, and two equations, one for each ω , but both equations give
the same solution, namely, H1 = 2.25. To determine H0 one can solve

4.05 = V0 = H0 +H1S1 = H0 +(2.25)(5)

to obtain H0 =−7.2.
In summary, the contingent claim X is indeed attainable. To generate it you start

with 4.05, you borrow 7.2 at the riskless interest rate r = 1/9, and you use the sum
4.05+7.2 = 11.25 to purchase 11.25÷5 = 2.25 shares of the risky asset. At time t = 1
you must pay (7.2)(10/9) = 8 to settle the loan. The amount of money remaining in
the portfolio will depend on ω: in state ω1 this will be V1 = (2.25)(20/3)− 8 = 7,
whereas in state ω2 this will be V1 = (2.25)(40/9)− 8 = 2. If the time t = 0 value of
this contingent claim were different from 4.05, then you could use this trading strategy
in the manner discussed at the beginning of this section to lock in a riskless profit.

Example 1.7. For a general securities model, taking

X(ω) =

{
1, ω = ω̂

0, ω 6= ω̂

for some ω̂ ∈Ω leads to the time t = 0 price (if X is attainable)

EQ[X/B1] = ∑
ω

Q(ω)X(ω)/B1(ω) = Q(ω̂)/B1(ω̂)

For this reason Q(ω̂)/B1(ω̂) is sometimes called the state price for state ω̂ ∈ Ω. Thus
the time t = 0 price of an attainable contingent claim is simply the weighted sum across
the states of the payoffs under X , with the weights being the state prices.

Example 1.8 (Call Options). Suppose N = 1 and X has the form

X = (S1− e)+ = max{0,S1− e}
where e is a specified number called the exercise price or the strike price. Hence X is
the contingent claim corresponding to the right to purchase the risky security at time
t = 1 for the amount e. If it turns out that S1 ≥ e, then at time t = 1 this right will be
worth the difference S1− e, and so the option should be exercised. On the other hand, if
S1 ≤ e, then at time t = 1 this right will be worth nothing, and so the option should not
be exercised. If X is attainable, then its time t = 0 price is

EQ[X/B1] = ∑
ω∈Ω′

Q(ω)[S1(ω)− e]/B1(ω)

where Ω′ ≡ {ω ∈Ω : S1(ω)≥ e}.

Example 1.1 (continued) With r = 1/9 and e = 5, the time t = 1 value of the call option

dell
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is

X(ω) =

{
5/3, ω = ω1

0, ω = ω2

Hence if X is attainable, then its time t = 0 value is

EQ[X/B1] = (1/2)(9/10)(5/3) = 0.75

To check whether X is attainable, we shall try to compute a trading strategy that gener-
ates X . We solve the system of two equations (one for each state)

V1 = H0B1 +H1S1 = X

for the two unknowns and obtain H1 = 0.75 and H0 =−3. So, indeed, V0 = H0 +H1S0 =
−3+(0.75)(5) = 0.75 is the time t = 0 price of X .

Example 1.9 (Put options). Suppose N = 1 and X has the form

X = (e−S1)+ = max{0,e−S1}
Then X is the contingent claim that gives the owner the right to sell the risky security at
time t = 1 for the amount e. This option should be exercised if and only if S1 < e.

Example 1.2 (continued) Consider an arbitrary contingent claim X = (X1,X2,X3). This
claim is marketable if and only if V1 = H0B1 + H1S1 = X for some pair of numbers H0

and H1, that is, there exists a solution to the system of equations

ω1 : (10/9)H0 +(20/3)H1 = X1

ω2 : (10/9)H0 +(40/9)H1 = X2

ω3 : (10/9)H0 +(30/9)H1 = X3

Since there are three equations with only two unknowns, perhaps there is no solution.
Let’s see. Using the third equation to substitute for H0 in the first two gives

H1 = (3X1−3X3)/10 and H1 = (9X2−9X3)/10

Hence the contingent claim is attainable if and only if these two values of H1 are the
same, that is, if and only if

X1−3X2 +2X3 = 0 (1.21)

This example illustrates the general principle that not all the contingent claims are at-
tainable whenever the underlying model has multiple risk neutral probability measures,
a principle that will be developed in the next section.

Exercise 1.12. For example 1.1 with r = 1/9, what is the price of a put option with
exercise price e = 5? What trading strategy generates this contingent claim?
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Exercise 1.13 (Put-Call parity). Suppose the interest rate r is a scalar, and let c and p
denote the prices of a call and put, respectively, both having the same exercise price e.
Show that either both are marketable or neither is marketable. Use risk neutral valuation
to show that in the former case one has

c− p = S0− e/(1+ r)

1.5 Complete and Incomplete Markets

Just because, as will be assumed throughout this section, there exists a risk neutral prob-
ability measure, it does not necessarily follow that one can use the risk neutral valuation
principle to determine the time t = 0 price of a contingent claim. The problem, of course,
is that the contingent claim might not be marketable, in which case it is not clear what
its time t = 0 price should be. En particular, there is no reason to be sure that EQ[X/B1]
is the correct value. We therefore need a convenient method for checking whether a con-
tingent claim is indeed marketable. One method, as illustrated with example 1.1 in the
preceding section, is to try to compute a generating trading strategy by solving a system
of linear equations. A solution to such a system will exist if and only if the contingent
claim is marketable. But there exist alternative methods.

The model is said to be complete if every contingent claim X can be generated by
some trading strategy. Otherwise, the model is said to be incomplete. It turns out there
are simple ways to check whether a model is complete. One way is to understand when
the system of linear equations mentioned just above will always have a solution.

Suppose there are no arbitrage opportunities. Then the model is complete
if and only if the number of states in Ω equals the number of independent
vectors in {B1,S1(1), . . . ,SN(1)}.

(1.22)

To see this, define the K× (N +1) matrix A by

A =




B1(ω1) S1(1)(ω1) · · · SN(1)(ω1)
B1(ω2) S1(1)(ω2) · · · SN(1)(ω2)

...
...

...
B1(ωK) S1(1)(ωK) · · · SN(1)(ωK)




and consider column vectors H = (H0,H1, . . . ,HN)′ and X = (X1, . . . ,XK). Then the
model is complete if and only if the system AH = X has a solution H for every X . By
linear algebra, this last fact will be true if and only if the matrix A has rank K, that is,
this matrix has K independent columns.
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Example 1.1 (continued) The matrix

A =

[
10/9 20/3
10/9 40/9

]

has two independent rows, so this model is complete.

Example 1.10. Suppose we take example 1.1 and add a second risky security with
S2(0) = 54, S2(1)(ω1) = 70, and S2(1)(ω2) = 50. Note that Q = (1/2,1/2) is still a
risk neutral probability measure because 54 = (1/2)(9/10)70+(1/2)(9/10)50. Now

A =

[
10/9 20/3 70
10/9 40/9 50

]

but this still has rank two. Hence this augmented model is still complete, although the
risky securities are redundant.

Example 1.2 (continued) The matrix

A =




10/9 20/3
10/9 40/9
10/9 10/3




has rank two, whereas K = 3, so this model is incomplete. Now we saw earlier that the
risk neutral probability measures are of the form Q = (λ ,2− 3λ ,−1 + 2λ ), where λ
is any scalar satisfying 1/2 < λ < 2/3. Suppose we take any such Q and then use the
formula from the risk neutral valuation principle (1.20):

EQ[X/B1] = λ (9/10)X1 +(2−3λ )(9/10)X2 +(−1+2λ )(9/10)X3

If X is marketable, then this value will be the same for all λ because it must coincide
with V0 under the generating trading strategy. Note that this value is the same if and only
if equation (1.21) holds. Moreover, recall from the discussion of (1.21) that a contin-
gent claim is marketable if and only if (1.21) holds. Putting this together, we see that a
contingent claim in this model is marketable if and only if EQ[X/B1] is the same value
under every risk neutral probability measure. It turns out that this necessary and suffi-
cient condition holds in general.

As stated earlier, throughout this section it will be assumed that M 6= /0, where M
is the set of all risk neutral probability measures. Now if the contingent claim X is
attainable, then EQ[X/B1] is constant with respect to all Q ∈M. This is because, as
already discussed in connection with (1.18), one has V0 = EQ[X/B1] for all Q ∈ M,
where V0 is the initial value of the replicating portfolio.

To show the converse, it suffices to suppose that the contingent claim X is not attain-
able and then demonstrate that EQ[X/B1] does not take the same value for all Q ∈M.
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Consider the K× (N + 1) matrix A, the (N + 1)-dimensional column vector H, and the
K-dimensional column vector X as described above in connection with (1.22). If X is
not attainable, then there is no solution H to the system AH = X . By a slightly modified
version of Farkas’s Lemma (see exercise 1.11), it follows that there must exist a row
vector π = (π1, . . . ,πK) satisfying

πA = 0, πX > 0.

Let Q̂ ∈M be arbitrary, and let the scalar λ > 0 be small enough so that

Q(ωk)≡ Q̂(ωk)+λπkB1(ωk) > 0, all k = 1, . . . ,K.

Since π times the ‘zeroth’ column of A is zero, it follows that the quantity Q which was
just defined is actually a probability measure giving positive probability to each state
ω ∈Ω. Moreover, for any discounted price process S∗n we have

EQS∗n(1) = ∑Q(ωk)[Sn(1,ωk)]/[B1(ωk)]

= ∑ Q̂(ωk)[Sn(1,ωk)]/[B1(ωk)]+λ ∑πkSn(1,ωk)

= ∑ Q̂(ωk)S∗n(1,ωk)

where we used the fact that it times the ‘nth’ column of A is zero. But Q̂ ∈ M, so
∑ Q̂(ωk)S∗n(1)(ωk) = S∗n(0), in which case we realize that Q ∈M.

It remains to show that the expected value of X/B1 under Q is different from the
expected value under Q̂. Denote δ ≡ πX and note that δ > 0. Then

EQ[X/B1] = ∑Q(ωk)X(ωk)/[B1(ωk)]

= ∑ Q̂(ωk)X(ωk)/[B1(ωk)]+λ ∑πkX(ωk)

= EQ̂[X/B1]+λδ

In other words, EQ[X/B1] 6= EQ̂[X/B1] since X is not attainable. In summary, therefore,
we have the following important result.

The contingent claim X is attainable if and only if EQ[X/B1] takes the same
value for every Q ∈M.

(1.23)

Notice that if M is a singleton and X is an arbitrary contingent claim, then trivially
EQ[X/B1] takes the same value for all Q ∈M, in which case X must be attainable and
the model must be complete. On the other hand, suppose every contingent claim X is
attainable but M contains two distinct risk neutral probability measures, say Q and Q̂.
In this case there must exist some state ωk with Q(ωk) 6= Q̂(ωk), so take the contingent
claim X defined by

X(ω) =

{
B1(ωk), ω = ωk

0, otherwise

Then
EQ[X/B1] = Q(ωk) 6= Q̂(ωk) = EQ̂[X/B1]
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Figure 1.3: Determining fair prices for unattainable contingent claim X

But this contradicts (1.23), which says that if X is attainable, then EQ[X/B1] takes the
same value for all Q ∈M. Hence if the model is complete, then M cannot have more
than one element. We can combine these observations as follows.

The model is complete if and only ifM consists of exactly one risk neutral
probability measure.

(1.24)

To summarize matters, if the model is complete then we know how to price all the
contingent claims. Moreover, if the model is not complete then we know how to price
some of the contingent claims, namely, all the attainable ones. But what about the claims
that are not attainable in an incomplete model? For such a claim we cannot pinpoint its
time t = 0 price, but it turns out that at least we can identify an interval within which a
fair, reasonable value for the time t = 0 price must fall.

For the rest of this section we shall be considering an incomplete model and we shall
focus on an arbitrary contingent claim X that is not attainable. Consider the quantity

V+(X)≡ inf{EQ[Y/B1] : Y ≥ X , Y is attainable}
and refer to figure 1.3 throughout this discussion. The choice of Q ∈M here does not
really matter since it is only being used to compute the price of attainable contingent
claims. Note that λB1 is an attainable contingent claim for all values of the scalar λ and
that λB1 ≥ X for all large enough values of λ ; hence V+(X) is well defined and finite.
Notice also that V+(X) is bounded below by sup{EQ[X/B1] : Q ∈M}.

The quantity V+(X) is important because it is a good upper bound on the fair price
of X . This follows from an arbitrage argument that is similar to the one discussed in
the preceding section. If X could be sold for a greater amount, say p > V+(X), then
one should make use of the trading strategy that replicates Y , which is any attainable
contingent claim satisfying Y ≥ X and p > EQ[Y/B1]≥V+(X). In particular, one should
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sell X at time t = 0, use part of the proceeds to purchase for the amount EQ[Y/B1] the
portfolio which replicates Y , and pocket the difference p−EQ[Y/B1] as a riskless profit.
At time t = 1 the value of the portfolio Y will always be enough to cover the obligation
X of the contingent claim. Hence V+(X) is the price of the cheapest portfolio that can
be used to hedge a short position in the contingent claim X .

The unattainable contingent claim X cannot trade at a price higher than V+(X), or else
there will exist an arbitrage opportunity. Similarly, this contingent claim cannot trade at
a price lower than V−(X), where

V−(X)≡ sup{EQ[Y/B1] : Y ≤ X , Y is attainable}

As with V+(X), the quantity V−(X) is well defined and finite with V−(X)≤ inf{EQ[X/B1] :
Q∈M}. The fair price (or prices) of X must be in the interval [V−(X),V+(X)]. We there-
fore are interested in computing V+(X) as well as any attainable contingent claim Y ≥ X
satisfying V+(X) = EQ[Y/B1], and similarly for V−(X).

Consider the linear program

minimize to λ
subject to Y ≥ X

U−Y/B1 = 0

λ −U ·Q1 = 0
...

...
...

λ −U ·QJ = 0

(1.25)

λ ∈ R, Y ∈ RK, U ∈ RK

Here Q j ∈M =W⊥∩P⊥, j = 1, . . . ,J, are chosen to be independent vectors, thereby
forming a basis of W⊥, which is assumed to have dimension J. This means that the
subspaceW of discounted gains has dimension K− J and can be expressed as

W=
{

X ∈ RK : X ·Q j = 0 for j = 1, . . . ,J
}

Now suppose Y is an attainable contingent claim with time t = 0 price λ , and set
U = Y/B1. Because V ∗

1 = V ∗
0 + G∗, this statement is equivalent to the statement that

U−λe ∈W and U = Y/B1, where e here is a row vector of 1’s. But e ·Q j = 1 for all j,
so this statement, in turn, is equivalent to the statement that U =Y/B1 and U ·Q j−λ = 0
for j = 1, . . . ,J. Hence the feasible region in the linear program (1.25) can be interpreted
as being the set of all attainable contingent claims Y with Y ≥ X . It follows that if λ
and Y are part of an optimal solution of this linear program, then V+(X) = λ and Y is
an attainable contingent claim with Y ≥ X and time t = 0 price equal to V+(X). Note
that an optimal solution always exists to this linear program because the feasible region
is nonempty and the objective function is bounded below.
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Similarly, if you solve the linear program

maximize λ
subject to Y ≤ X

U−Y/B1 = 0

λ −U ·Q1 = 0
...

...
...

λ −U ·QJ = 0

(1.26)

λ ∈ R, Y ∈ RK, U ∈ RK

and obtain an optimal solution (λ ,Y,U), then V−(X) and Y is an attainable contingent
claim with Y ≤ X and time t = 0 price equal to V−(X).

It turns out that not only does linear programming enable us to completely solve for
the quantities of interest, but it gives us something extra as a bonus. Consider another
linear program:

maximize
K

∑
k=1

[X(ωk)/B1(ωk)]ψk

subject to θ1 + · · ·+θJ = 1

ψ1−Q1(ω1)θ1−·· ·−QJ(ω1)θJ = 0
...

...
...

ψK−Q1(ωK)θ1−·· ·−QJ(ωK)θJ = 0

(1.27)

ψ ∈ RK, θ ∈ RJ, ψ ≥ 0

If (ψ,θ) is an arbitrary feasible solution, then

ψ = θ1Q1 +θ2Q2 + · · ·+θJQJ,

which is non-negative. Moreover, with e a row vector of 1’s we have

e ·ψ = θ1e ·Q1 + · · ·+θJe ·QJ = θ1 + · · ·+θJ = 1

since each Q j is a probability measure, so ψ can be interpreted as a probability measure
too. For any discounted price process S∗n we have

Eψ [∆S∗n] = θ1Q1 ·∆S∗n + · · ·+θJQJ ·∆S∗n = 0

since each QJ ∈M. Hence ψ can be interpreted as a linear pricing measure (but not,
necessarily, as a risk neutral probability measure). In other words the feasible region
can be interpreted as the closure of M. It follows that the optimal value of the objective
function in linear program (1.27) is precisely equal to sup{EQ[X/B1] : Q ∈M}.

Now here comes a startling result of fundamental importance. By linear programming
theory the linear programs (1.25) and (1.27) are duals of each other. Both programs are
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feasible, so by linear programming duality theory, their optimal objective values are
equal to each other. Analogous results hold for linear program (1.26), of course, so all
these results can be summarized as follows:

IfM 6= /0, then for any contingent claim X one has

V+(X) = sup{EQ[X/B1] : Q ∈M} and

V−(X) = inf{EQ[X/B1] : Q ∈M}.
(1.28)

Of course, if X is attainable, then V+(X) = V−(X) is its usual time t = 0 price.

Example 1.2 (continued) Consider the contingent claim X = (30,20,10). This is not
attainable, because it does not satisfy equation (1.21). Recalling that M consists of all
probability measures of the form Q = (q,2− 3q,−1 + 2q) where 1/2 < q < 2/3, it is
straightforward to compute (making a slight and obvious change of notation for this
particular example) Eq[X/B1] = 27−9q. Hence

V+(X) = sup
q

Eq[X/B1] = sup
q
{27−9q}= 27−9(1/2) = 221

2

and

V−(X) = inf
q

Eq[X/B1] = inf
q
{27−9q}= 27−9(2/3) = 21

Upon solving the linear program (1.25) one obtains the attainable contingent claim cor-
responding to V+(X); this is Y = (30,20,15), as can be verified by checking equation
(1.21) and checking that the time t = 0 price of Y is indeed 221

2 . Similarly, the attainable
contingent claim corresponding to V−(X) is verified to be Y = (30,50/3,10).

Exercise 1.14. Explain why the model in example 1.4 is not complete. Characterize
the set of all the attainable contingent claims. Compute V+(X) and V−(X) for X =
(40,30,20,10).

Exercise 1.15. Use (1.23) to verify whether there are any values of the exercise price e
such that the call option is attainable for the model in example 1.2. Similarly, specify
which put options are attainable. Assume r = 1/9.

Exercise 1.16. Just after linear program (1.25) it was asserted that one can choose
Q j ∈M =W⊥ ∩P+, j = 1, . . . ,J, to be independent vectors, thereby forming a basis
of W⊥, which is assumed to have dimension J. Use linear algebra to carefully verify
this assertion. Compute Q j vectors for example 1.4.
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1.6 Risk and Return

With Q a risk neutral probability measure and ω ∈Ω, recall that Q(ω)/B1(ω) is some-
times called the state price of ω . For this reason, the random variable

L(ω)≡ Q(ω)
P(ω)

is called the state price vector or the state price density. The main result to be shown
in this section is that the risk premium of an arbitrary portfolio is proportional to the
covanance6 between a return corresponding to the state price density and the return for
the portfolio, a result that resembles a principal finding of the capital asset pricing model.

Assuming the time t = 0 price Sn(0) is strictly positive, the return R for risky security
n is defined to be the random variable

Rn ≡ Sn(1)−Sn(0)
Sn(0)

, n = 1, . . . ,N

Similarly, the return corresponding to the bank account is defined by

R0 ≡ B1−B0

B0
= r

The returns are useful quantities for a variety of purposes, one of which is that if you
know the time t = 0 prices and the returns, then you can compute time t = 1 prices.
Since prices are non-negative one has Rn ≥−1, with equality if and only if Sn(1) = 0. It
is left as an exercise to verify that the gain for a portfolio can be written as

G = H0B0R0 +
N

∑
n=1

HnSn(0)Rn (1.29)

Hence the gain for a portfolio is a weighted combination of the underlying returns, each
weight being the amount of money invested at time t = 0 in the corresponding security.

The returns can also be used to compute risk neutral probability measures. Since

S∗n(1)−S∗n(0) =
Sn(1)−B1Sn(0)

B1

=
[1+Rn]Sn(0)− [1+R0]Sn(0)

1+R0

= Sn(0)
(

Rn−R0

1+R0

)

it follows from (1.15) that
If Q is a probability measure with Q(ω) > 0 for all ω ∈Ω, then Q is a risk
neutral probability measure if and only if

EQ

(
Rn−R0

1+R0

)
= 0, n = 1, . . . ,N

(1.30)

6For two random variables X and Y , the covariance cov(X ,Y ) is defined to be E[XY ]−E[X ]E[Y ]. Note that
cov(X −E[X ],Y ) = cov(X ,Y ). Moreover, given three random variables X , Y , and Z and two scalars a and b, one
has cov(aX +bZ,Y ) = acov(X ,Y )+bcov(Z,Y ).
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Notice that when the interest rate R0 = r is deterministic, the equation in (1.30) be-
comes simply

EQ[Rn] = r, n = 1, . . . ,N

This is one example of many situations where, under the assumption of a determin-
istic interest rate, one has a nice, and often important, relationship involving returns.
Therefore, this assumption will be in force for the balance of this section, as will be the
assumption that there exists a risk neutral probability measure Q.

The mean return for security n, denoted Rn = E[Rn], often plays an important role.
For example, it is easy to see that cov(Rn,L) = E[RnL]−E[Rn]E[L] = EQ[Rn]−E[Rn] =
r− R̄n. In other words,

R̄n− r =−cov(Rn,L), n = 1, . . . ,N (1.31)

The difference R̄n− r here is called the risk premium for the security: normally this is
positive because investors usually insist that the expected returns of risky securities be
higher than the riskless return r. Thus (1.31) says that the risk premium of a security is
related to the correlation7 between the security’s return and the state price density.

Consider the return R of a portfolio corresponding to an arbitrary trading strategy
H = (H0,H1, . . . ,HN). Assuming V0 > 0, this is

R =
V1−V0

V0

Using Sn(1) = Sn(0)[1+Rn] and the definition of Vt one obtains

R =
H0

V0
r +

N

∑
n=1

[
HnSn(0)

V0

]
Rn (1.32)

If you interpret H0/V0 as the fraction of money invested in the savings account (re-
call B0 = 1) and HnSn(0)/V0 as the fraction of money invested in the nth security, then
(1.32) says that the return on the portfolio is a convex combination of the returns of the
individual securities. Using (1.31), (1.32), and some basic properties of the covariance,
it is straightforward to verify that

R̄− r =−cov(R,L) (1.33)

where, of course, R̄ = E[R].
Now fix two scalars a and b with b 6= 0, and assume the contingent claim a + bL

is attainable, that is, suppose there exists some trading strategy H ′ such that V ′
1 = a +

bL. Since V ′
0(1 + R′) = a + bL (here V ′ and R′ denote the value and return processes,

7The variance, denoted var(X), of a random variable X is defined by var(X) ≡ E[X2]− (E[X ])2 = E[(X −
E[X ])2]. The standard deviation of X is σx ≡

√
var(X). The correlation between the random variables X and Y

(assuming σX > 0 and σY > 0) is defined by ρ(X ,Y )≡ cov(X ,Y )/(σX σY ). Hence the risk premium for security n
equals −ρ(Rn,L)σRnσL.
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respectively, corresponding to H ′), one can substitute for L and use the properties of the
covariance relationship to verify that

cov(R,L) =
V ′

0
b

cov(R,R′)

(R still corresponds to an arbitrary trading strategy). Hence (1.33) can be rewritten as

R̄− r =−V ′
0

b
cov(R,R′) (1.34)

In particular, in the special case where you choose H = H ′, (1.34) says that

R̄′− r =−V ′
0

b
cov(R′,R′) =−V ′

0
b

var(R′)

Using this to substitute for V ′
0/b in (1.34), where now we are back to an arbitrary trading

strategy H, we obtain the following:

Suppose for scalars a and b the contingent claim a + bL is generated by
some portfolio having return R′ and suppose the interest rate r is determin-
istic. Let R be the return of an arbitrary portfolio. Then

R̄− r =
cov(R,R′)

var(R′)
(R̄′− r)

(1.35)

The ratio cov(R,R′)/var(R′) is called the beta of the trading strategy H with respect
to the trading strategy H ′. This result says that the risk premium of H is proportional
to the risk premium of H ′, with the proportionality constant being this beta. Or from
a slightly different perspective, (1.35) says that the risk premium is proportional to its
beta with respect to a linear transformation of the state price density. This result re-
sembles the traditional capital asset pricing model, only here H ′ corresponds to a linear
transformation of the state price density instead of the market portfolio.

Notice that with a deterministic interest rate r and with arbitrary scalars a and b
(b 6= 0), the contingent claim a +bL is attainable if and only if the state price density L
is. This is because H0(1+ r)+∑HnSn(1) = a+bL if and only if

1
b

[
H0− a

1+ r

]
(1+ r)+

N

∑
n=1

1
b

HnSn(1) = L

Exercise 1.17. Verify equation (1.29), both in general and by applying it to example 1.1.

Exercise 1.18. Assuming the time t = 0 price is strictly positive, the discounted return
R∗n is defined by R∗n ≡ [S∗n(1)−S∗n(0)]/S∗n(0) for n = 1, . . . ,N. Show that

(a) G∗ =
N

∑
n=1

HnS∗n(0)R∗n
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(b) R∗n =
Rn−R0

1+R0
, n = 1, . . . ,N

(c) The strictly positive probability measure Q is a risk neutral probability measure if
and only if EQ[R∗n] = 0 for n = 1, . . . ,N.

Exercise 1.19. Analyze the risk and return properties of example 1.1 assuming P(ω1) =
p for a general parameter 0 < p < 1.

(a) What are R1 and R̄1?

(b) What is L?

(c) Verify (1.31) for n = 0 and 1.

From now on suppose H = (H0,H1) = (1,3).

(d) What are R and R̄?

(e) Verify (1.32).

(f) Verify (1.33).

(g) What are H ′, V , and R′?

(h) Verify (1.34).

(i) Verify (1.35).
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Chapter 2

Single Period Consumption and
Investment

2.1 Optimal Portfolios and Viability

This chapter is concerned with the problem of choosing the best trading strategy for the
purpose of transforming wealth invested at time t = 0 into time t = 1 wealth. With some
variations of this problem that will be considered in later sections, a portion of the wealth
is consumed at time t = 0. The problem is to compute an optimal trading strategy, and
for this a measure of performance is needed.

The measure of performance that will be used here is that of expected utility. In
particular, suppose u : R×Ω→ R is a function such that w→ u(w,Ω) is differentiable,
concave, and strictly increasing for each ω ∈Ω. If w is the value of the portfolio at time
t = 1 and ω is the state, then u(w,ω) will represent the utility of the amount w. Hence
our measure of performance will be the expected utility of terminal wealth, that is,

Eu(V1) = ∑
ω∈Ω

P(ω)u
(
V1(ω),ω

)

Note that the utility function u can depend explicitly on both the terminal wealth w
and the state ω . However, for many applications it suffices for u to depend only on the
wealth, in which case u is simply a concave, strictly increasing function with a single
argument.

Let H denote the set of all trading strategies, that is, H = RN+1 the linear space of
all vectors of the form (H0,H1, . . . ,HN). Let v ∈ R be a specified scalar representing the
initial, time t = 0 wealth. We are interested in the following optimal portfolio problem:

maximize
H∈H

Eu(V1)

subject to V0 = v
(2.1)

Since V1 = B1V ∗
1 and V ∗

1 = V ∗
0 +G∗, this is the same as

maximize E
[
u
(
B1{v+H1∆S∗1 + · · ·+HN∆S∗N}

)]
(2.2)

Notice that if there exists an arbitrage opportunity, then there cannot exist a solution
to (2.1). In other words, if Ĥ is a solution and H is an arbitrage opportunity, then setting

32
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H̃ = Ĥ +H gives

v+
N

∑
n=1

H̃n∆S∗n = v+
N

∑
n=1

Ĥn∆S∗n +
N

∑
n=1

Hn∆S∗n ≥ v+
N

∑
n=1

Ĥn∆S∗n

where the inequality follows because H is an arbitrage opportunity. In fact, this inequal-
ity is actually strict for at least one ω ∈ Ω. Since u is strictly increasing in wealth and
since P(ω) > 0 for all ω ∈ Ω, this means the objective value in (2.2) is strictly greater
under H̃ than under Ĥ. This contradicts the assertion that Ĥ is an optimal solution of
(2.2), in which case the following must be true:

If there exists an optimal solution of the portfolio problem (2.1) or (2.2),
then there are no arbitrage opportunities.

(2.3)

In other words, (2.3) says that if there exists an optimal solution to (2.1) or (2.2),
then there exists a risk neutral probability measure. By a result that is somewhat surpris-
ing, there exists an explicit relationship between any such solution and the risk neutral
probability measures. This relationship can be derived from the first order conditions
necessary for optimality. To see this, rewrite the objective function in (2.2) as

∑
ω∈Ω

P(ω)u
(
B1(ω){v+H1∆S∗1(ω)+ · · ·+HN∆S∗N(ω)},ω)

so that the first order necessary condition can be expressed as

0 =
∂E

[
u
(
B1{v+H1∆S∗1 + · · ·+HN∆S∗N}

)]

∂Hn

= ∑
ω∈Ω

P(ω)u′
(
B1(ω){v+H1∆S∗1(ω)+ · · ·+HN∆S∗N(ω)},ω)

B1(ω)∆S∗n(ω)

= E[B1u′(V1)∆S∗n], n = 1, . . . ,N

(2.4)

where u′ denotes the partial derivative of u with respect to the first argument. Hence if
(H,V ) is a solution of (2.2), then it must satisfy this system of N equations. But recall
the condition which a risk neutral probability measure must satisfy:

0 = EQ[∆S∗n] = ∑
ω∈Ω

Q(ω)∆S∗n(ω), n = 1, . . . ,N (2.5)

Comparing (2.4) and (2.5) it is apparent that upon setting Q(ω)= P(ω)B1(ω)u′
(
V1(ω),ω

)
one has obtained a measure satisfying (2.5). Note that Q(ω) > 0 for all ω since u is
strictly increasing. However, Q(ω1)+ · · ·+Q(ωK) is not necessarily equal to one, so Q
is only a probability measure up to a constant. It is easy to see what this constant should
be, and so we have the following:

If (H,V ) is a solution of the optimal portfolio problem (2.1) or (2.2), then

Q(ω)≡ P(ω)B1(ω)u′
(
V1(ω),ω

)

E[B1u′(V1)]
, ω ∈Ω

defines a risk neutral probability measure.

(2.6)
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Rewriting (2.6) slightly in the case where B1 = 1 + r is constant, we obtain L(ω) =
Q(ω)/P(ω) = u′

(
V1(ω),ω

)
/E[u′(V1)]. In other words, when the interest rate is deter-

ministic, the state price density is proportional to the marginal utility of terminal wealth.
What about the converse? If there exists a risk neutral probability measure Q, then

does the optimal portfolio problem (2.1) have a solution? Not necessarily, for some
u and v may be such that no solution H exists. However, one can always find some
u and v such that a solution H does exist. Formalizing this idea, we will say that the
model is viable if there exists a function u : R×Ω → R and an initial wealth v such
that w → u(w,ω) is concave and strictly increasing for each ω ∈ Ω and such that the
corresponding optimal portfolio problem (2.1) has an optimal solution H.

The securities market model is viable if and only if there exists a risk neu-
tral probability measure Q.

(2.7)

In view of (2.6), to verify this principle it suffices to assume the existence of a risk
neutral probability measure, cleverly select u and v, and then demonstrate the existence
of a solution of (2.2). The choice of u will be

u(w,ω) = w
Q(ω)

P(ω)B1(ω)

while v will be arbitrary. Now for an arbitrary (H1, . . . ,HN) we have

E
[
u
(
B1{v+H1∆S∗1 + · · ·+HN∆S∗N} ,ω

)]

= ∑P(ω)B1(ω){v+H1∆S∗1 + · · ·+HN∆S∗N}Q(ω)/[P(ω)B1(ω)]

= ∑Q(ω){v+H1∆S∗1 + · · ·+HN∆S∗N}
= v+H1EQ[∆S∗1]+ · · ·+HNEQ[∆S∗N] = v

so every vector (H1, . . . ,HN) gives rise to the same objective value in (2.2). Equivalently,
every trading strategy with initial wealth v gives rise to the same objective value in (2.1),
which means that all such trading strategies are optimal. Hence (2.7) is true by this
clever choice of utility function.

The optimal portfolio problem (2.1) or (2.2) is a standard convex optimization prob-
lem, so one can use standard techniques to compute a solution. One such approach is
to work with the necessary equations (2.4), a system of N equations and N unknowns.
Unfortunately, as seen in the following example, these equations can be nonlinear in H
and thus difficult to solve.

Example 2.1. Suppose N = 2, K = 3, r = 1/9, and the discounted price process is as
follows:

n S∗n(0) S∗n(1)
ω1 ω2 ω3

1 6 6 8 4
2 10 13 9 8

dell
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Note that there exists a unique risk neutral probability measure, because Q =(1/3,1/3,1/3)
is the unique solution of the following system of equations:

6 = 6Q(ω1)+8Q(ω2)+4Q(ω3)

10 = 13Q(ω1)+9Q(ω2)+8Q(ω3)

1 = Q(ω1)+Q(ω2)+Q(ω3)

With the exponential utility function u(w) =−exp{−w}, the marginal utility function
is u′(w) = exp{−w}. Hence the necessary conditions (2.4) are:

0 = P(ω1)exp{−(10/9)(v+0H1 +3H2)}(10/9)(0)

+P(ω2)exp{−(10/9)(v+2H1−H2)}(10/9)(2)

+P(ω3)exp{−(10/9)(v−2H1−2H2)}(10/9)(−2)

0 = P(ω1)exp{−(10/9)(v+0H1 +3H2)}(10/9)(3)

+P(ω2)exp{−(10/9)(v+2H1−H2)}(10/9)(−1)

+P(ω3)exp{−(10/9)(v−2H1−2H2)}(10/9)(−2)
Needless to say, these are not so easy to solve for H1 and H2.

Exercise 2.1. Suppose N = 1, K = 2, S0 = 5, S1(ω1) = 20/3, and S1(ω2) = 40/9. Solve
(2.1) in the case of r = 1/9 and general scalar parameters for the initial wealth v≥ 0 and
the probability P(ω1) = p under the utility functions

(a) u(w) = lnw

(b) u(w) =−exp(−w)

(c) u(w) = γ−1wγ , where −∞ < γ < 1, γ 6= 0.

2.2 Risk Neutral Computational Approach

As seen in example 2.1, solving the optimal portfolio problem (2.1) can be computa-
tionally difficult. Fortunately, there is an alternative technique which involves the risk
neutral probability measure and is much more efficient. The idea is based on the obser-
vation that the objective function H → Eu(V1) in (2.1) can be viewed as the composition
of two functions, as illustrated in figure 2.1. The first function H → V1 maps trading
strategies into random variables which represent the time t = 1 value of the portfolio.
The second function V1 → Eu(V1) maps random variables into numbers on the real line.
Corresponding to this composition, the risk neutral computation technique involves a
two-step process. First you identify the optimal random variable V1, that is, the value of
V1 maximizing Eu(V1) over the subset of feasible random variables. Then you compute
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Figure 2.1: The risk neutral computational approach

the trading strategy H that generates this V1, that is, you solve for the trading strategy
that replicates the contingent claim V1.

Step 2 is easy. This is exactly the same as was discussed in section 1.4 for computing
the trading strategy which replicates an attainable contingent claim. If the subset of
feasible random variables were chosen correctly for step 1, then the computed trading
strategy which replicates V1 will correspond to a portfolio having time t = 0 value equal
to v. In other words, the attainable contingent claim V1 will have time t = 0 price equal
to v, the specified initial value of the portfolio.

Step 1 is a bit more challenging, but it just involves straightforward optimization
theory. The key to success is to specify the subset of feasible random variables correctly
and conveniently. If the model is complete, this subset is simply

Wv ≡
{

W ∈ RK : EQ[W/B1] = v
}

(2.8)

(the specification of Wv for incomplete models is more complex and will be dis-
cussed below). To see this, note that under any trading strategy H with V0 = v one
has EQ[V1/B1] = v by the risk neutral valuation principle. Conversely, for any contin-
gent claim W ∈W there exists, again by the risk neutral valuation principle, a trading
strategy H such that V0 = v and V1 = W . In the context of optimal portfolio problems,
the subsetWv (actually, an affine subspace) is called the set of attainable wealths.

The first step in the risk neutral computation technique is to solve the subproblem:

maximize Eu(W )

subject to W ∈Wv
(2.9)

When the model is complete, this problem can be conveniently solved with a Lagrange
multiplier. In view of (2.8), problem (2.9) is equivalent to

maximize Eu(W )−λEQ[W/B1] (2.10)

where the Lagrange multiplier λ is chosen so that the solution in (2.10) satisfies

EQ[W/B1] = v (2.11)
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Introducing the state price density L = Q/P, the objective function in (2.10) can be
rewritten as

Eu(W )−λE[LW/B1] = E[u(W )−λLW/B1]

= ∑
ω

P(ω)
[
u
(
W (ω)

)−λL(ω)W (ω)
/

B1(ω)
]

If W maximizes this expression, then the necessary conditions must be satisfied, giving
rise to one equation for each ω ∈Ω:

u′
(
W (ω)

)
= λL(ω)/B1(ω), all ω ∈Ω

Note that this equation is exactly the same as the one in (2.6); in fact, since W = V1 one
can deduce that λ is equal to E[B1u′(W )], where W is the optimal solution. To compute
W we solve the preceding displayed equation for W (ω) giving

W (ω) = I[λL(ω)/B1(ω)] (2.12)

where I denotes the inverse function corresponding to u′.
Hence (2.12) gives the optimal solution of (2.9) when λ takes the correct value. But

what is the correct value? It is simply the value such that (2.1 1) is satisfied when (2.12)
is substituted for W , that is,

EQ[I(λL/B1)/B1] = v (2.13)

The inverse function I is decreasing, and its range will normally include (0,∞), so nor-
mally a solution λ to (2.1 1) will exist for v > 0.

Example 2.2. Suppose u(w) =−exp(−w), so that u′(w) = exp(−w). Then u′(w) = i if
and only if w = − ln(i), so I(i) = − ln(i). Hence the optimal solution of (2.9) is of the
form

W =− ln(λL/B1) =− ln(λ )− ln(L/B1)

and (2.13) becomes

v =−EQ
[
B−1

1 ln(λL/B1)
]
=− ln(λ )EQB−1

1 −EQ[ln(L/B1)/B1]

Hence the correct value of λ is given by

λ = exp

{
−v−EQ

[
B−1

1 ln(L/B1)
]

EQB−1
1

}

so

W =
v+EQ

[
B−1

1 ln(L/B1)
]

EQB−1
1

− ln(L/B1)

Substituting this into −exp(−W ) gives

u(W ) =−exp

{
−v+ ln(L/B1)EQB−1

1 −EQ
[
B−1

1 ln(L/B1)
]

EQB−1
1

}

=−λL/B1
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so the optimal value of the objective function in (2.9) is

Eu(W ) =−λE[L/B1] =−λEQB−1
1

This example illustrates a general pattern: general formulas for the optimal wealth
W and so forth are obtained which depend on the underlying securities market model
only via the probability measures P and Q. In other words, P and Q comprise what can
be thought of as a sufficient statistic for the optimal portfolio subproblem (2.9). After
deriving the formulas like those in example 2.2 for a particular utility function, one can
quickly analyze any complete securities market model having the same utility function.

Examples 2.1 and 2.2 (continued) Suppose P(ω1) = 1/2 and P(ω2) = P(ω3) = 1/4
so the state price density L is given by L(ω1) = 2/3 and L(ω2) = L(ω3) = 4/3. With
r = 1/9 and B1 = 10/9 we compute

EQ[ln(L/B1)] = (1/3)
[(

2
3
· 9

10

)
+2ln

(
4
3
· 9

10

)]
=−0.04873

so the optimal attainable wealth is

W = v(1+ r)+EQ[ln(L/B1)]− ln(L/B1)

=

{
v(10/9)+0.46209, ω = ω1

v(10/9)−0.23105, ω = ω2,ω3

Note that EQ[W/B1] = v, as desired. Now λ = exp{−(10/9)v+0.04873}, so the optimal
value of the objective function is

Eu(W ) =−λEQB−1
1 =− 9

10
λ

Notice that, consistent with (2.6), λ = E[B1u′(V1)]. Also, having computed the op-
timal attainable wealth W , we can now easily compute the optimal trading strategy H
by solving W/B1 = v+G∗. In state of the discounted terminal wealth W (ω1)/B1 equals
v+(9/10)(0.46209) = v+0.41588, whereas the initial wealth plus the discounted gain
v+G∗(ω1) equals v+H1(6−6)+H2(13−10) = v+3H2. Similarly, equations are ob-
tained corresponding to states ω2 and ω3, yielding the following system of three equa-
tions:

ω1 : 0.41590 = 0H1 +3H2

ω2 : −0.20795 = 2H1−H2

ω3 : −0.20795 =−2H1−2H2

These equations are redundant and there exists a unique solution, which is H1 =−0.03466
and H2 = 0.13863. Using v = V0 = H0 + 6H1 + 10H2 to solve for H0 yields H0 =
v−1.17834. Finally, notice that, as desired, this trading strategy satisfies the necessary
conditions (2.4) (see example 2.1 above).
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Exercise 2.2 (log utility). Suppose u(w) = ln(w). Show that the inverse function I(i) =
i−1, the Lagrange multiplier λ = v−1, the optimal attainable wealth is W = vL−1B1,
and the optimal objective value is ln(v)−E[ln(L/B1)]. Compute these expressions and
solve for the optimal trading strategy in the case where N = 1, K = 2, r = 1/9, S0 = 5,
S1(ω) = 20/3, S1(ω2) = 40/9, and P(ω1) = 3/5.

Exercise 2.3 (isoelastic utility). Suppose u(w) = γ−1wγ , where −∞ < γ < 1 and γ 6= 0.
Show that the inverse function I(i) = i−1/(1−γ), the Lagrange multiplier

λ = v−(1−γ)
{

E
[
(L/B1)−γ/(1−γ)

]}(1−γ)

the optimal attainable wealth

W =
v(L/B1)−1/(1−γ)

E
[
(L/B1)−γ/(1−γ)

]

and the optimal objective value E[u(W )] = λv/γ . Compute these expressions and solve
for the optimal trading strategy in the case where the underlying model is as in exercise
2.2.

2.3 Consumption Investment Problems

A consumption process C = (C0,C1) consists of a non-negative scalar C0 and a non-
negative random variable C1. A consumption-investment plan consists of a pair (C,H),
where C is a consumption process and H is a trading strategy. A consumption-investment
plan is said to be admissible if (1) C0 +V0 = v, the money available at time t = 0, and
(2) C1 = V1. We always assume v≥ 0.

The quantity Ct should be interpreted as the amount consumed by the investor at time
t. Since C0 equals time zero consumption and since V0 = H0 +∑HnSn(0) is the amount
invested at time t = 0, the amount of money v available at time zero must be at least
C0 +V0. Since V1 = H0B1 +∑HnSn(1) is the amount of money available at time t = 1, it
must be that C1 ≤V1. Now a sensible investor who can consume only at times t = 0 and
t = 1 would not leave money ‘lying on the table’ at either time, so this investor would
probably not want to adopt a consumption-investment plan unless it is admissible.

A question that naturally arises is, given a consumption-investment plan (C,H) and
an initial amount of funds v, how do you check whether (C,H) is admissible? Of course
one way is to compute Vt and then check whether both C0 +V0 = v and C1 = V1. Notice
that if (C,H) is indeed admissible, then C1 is an attainable contingent claim with

EQ[C1/B1] = EQ[V1/B1] = V0

for every risk neutral probability measure Q, in which case

EQ[C0 +C1/B1] = v (2.14)
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Now here is a harder question: given some v ≥ 0 and some consumption process
C, how do you know whether there exists some trading strategy H such that (C,H) is
admissible? Well, if C1 is an attainable contingent claim, then there exists some trading
strategy H such that C1 = V1 = H0B1 + ∑HnSn. If, moreover, (2.14) is satisfied for
some Q, then C0 +V0 = v, in which case (C,H) is admissible. Notice that EQ[C0 +
C1/B1] is constant with respect to all risk neutral probability measures if and only if C1

is attainable. Hence we can summarize all these findings as follows:

Let the initial amount of money v ≥ 0 and the consumption process C
be fixed. There exists a trading strategy H such that the consumption-
investment plan (C,H) is admissible if and only if

C0 +EQ[C1/B1] = v

for every risk neutral probability measure Q.

(2.15)

Example 2.1 (continued) This model is complete with Q = (1/3,1/3,1/3). In order
for the consumption process (C0,C1) to be part of an admissible consumption-investment
plan we must have, of course, 0≤C0≤ v and C1≥ 0. In addition. we must have by (2.15)

v−C0 =
9

10
EQC1 =

3
10

[C1(ω1)+C1(ω2)+C1(ω3)]

Suppose an investor starts with initial wealth v and wants to choose an admissible
consumption-investment plan so as to maximize the expected value of the utility of con-
sumption at both times 0 and 1. Here the utility function u : R+ → R is assumed to be
concave, differentiable, and strictly increasing. Mathematically this problem is:

maximize u(C0)+E[u(C1)]

subject to C0 +H0B0 +
N

∑
n=1

HnSn(0) = v

C1−H0B1−
N

∑
n=1

HnSn(1) = 0

C0 ≥ 0 C1 ≥ 0 H ∈ RN+1

(2.16)

As with the optimal portfolio problem, this consumption-investment problem can be
solved either with standard optimization theory or with a risk neutral computational ap-
proach. To illustrate the former, consider the following:

Example 2.1 (continued) Suppose u(c) = ln(c). Since ln(c)→−∞ as c ↘ 0, we can
drop the explicit non-negativity constraints in (2.16). With P(ω1) = 1/2 and P(ω2) =
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P(ω3) = 1/4 and r = 1/9. the optimization problem becomes

maximize ln(C0)+ 1
2 ln

(
C1(ω1)

)
+ 1

4 ln
(
C1(ω2)

)
+ 1

4 ln
(
C1(ω3)

)

subject to C0 = v−H0−6H1−10H2

C1(ω1) =
10
9

H0 +
60
9

H1 +
130

9
H2

C1(ω2) =
10
9

H0 +
80
9

H1 +
90
9

H2

C1(ω3) =
10
9

H0 +
40
9

H1 +
80
9

H2

(2.17)

This simplifies to become

maximize ln(v−H0−6H1−10H2)+
1
2

(
10
9

H0 +
60
9

H1 +
130

9
H2

)

+
1
4

(
10
9

H0 +
80
9

H1 +
90
9

H2

)
+

1
4

(
10
9

H0 +
40
9

H1 +
80
9

H2

)

Computing the partial derivatives with respect to the Hn and then setting them equal to
zero, we obtain the necessary conditions:

−1
C0

+
1
2
· 10

9
· 1
C1(ω1)

+
1
4
· 10

9
· 1
C1(ω2)

+
1
4
· 10

9
· 1
C1(ω3)

= 0

−6
C0

+
1
2
· 60

9
· 1
C1(ω1)

+
1
4
· 80

9
· 1
C1(ω2)

+
1
4
· 40

9
· 1
C1(ω3)

= 0

−10
C0

+
1
2
· 130

9
· 1
C1(ω1)

+
1
4
· 90

9
· 1
C1(ω2)

+
1
4
· 80

9
· 1
C1(ω3)

= 0

(2.18)

Here the four equations in (2.17) were used in order to be concise, so actually the three
equations in (2.18) involve just the three unknowns H0, H1, and H2. Hence, although
it is not particularly easy to do so, these three equations can be solved for the optimal
trading strategy H, and then finally the four equations in (2.17) can be used to obtain the
optimal consumption process C.

A general consumption investment problem (2.16) can be solved in a manner similar
to that just used for example 2.1. The N + 1 first order necessary conditions are, in
general:

u′(C0) = E[B1u′(C1)] (2.19)

u′(C0)Sn(0) = E[u′(C1)Sn(1)], n = 1, . . . ,N (2.20)

Using the constraints in (2.16) to substitute for C0 and C1 gives rise to N + 1 equations
which, in principle, can be solved for the N + 1 unknowns H0,H1, . . . ,HN . Substituting
these values into the constraints of (2.16) gives the values of C0 and C1. This procedure
yields a solution of (2.16) provided C0 and C1 are both non-negative (suitable assump-
tions about the utility function, such as u′(c)→ ∞ as c ↘ 0, will guarantee the success
of this procedure).
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For some utility functions it is possible that one or more of the nonnegativity con-
straints will be binding, in which case the procedure just described would be unsuccess-
ful. Standard methods can be used to cope with such complications, but they will not be
described here.

Notice that equation (2.20) is similar to the condition that must be satisfied by a
risk neutral probability measure. Not surprisingly, therefore, we have the following
counterpart to (2.6):

If C is part of a solution to the optimal consumption investment problem
(2.16) with C0 > 0 and C1(ω) > 0 for all ω , then

Q(ω) = P(ω)B1(ω)
u′

(
C1(ω)

)

u′(C0)

defines a risk neutral probability measure.

(2.21)

To see this, simply note that

EQ[Sn(1)/B1] = ∑Q(ω)Sn(1,ω)/B1(ω)

= ∑P(ω)B1(ω)

(
u′

(
C1(ω)

)

u′(C0)

)(
Sn(1,ω)
B1(ω)

)

=
1

u′(C0)
E[u′(C1)Sn(1)]

Meanwhile, if C0 > 0 and C1(ω) > 0 for all ω ∈ Ω, then the first order necessary con-
dition (2.20) must hold. In this case it follows that E[u′(C1)Sn(1)]/u′(C0) and thus
EQ[Sn(1)/B1] equal Sn(0). Finally, using (2.19) it is easy to show that ∑Q(ω) = 1,
and so, indeed, Q as defined in (2.21) is a risk neutral probability measure.

We now turn to the risk neutral computational approach for solving the consumption-
investment problem (2.16) in the case of a complete model. The idea is to first use
principle (2.15) to rewrite (2.16) as follows:

maximize u(C0)+E[u(C1)]

subject to C0 +EQ[C1/B1] = v

C0 ≥ 0 C1 ≥ 0

(2.22)

The optimization problems (2.16) and (2.22) are essentially the same, because if the pair
(C,H) is feasible for (2.16), then C is feasible for (2.22); conversely, if C is feasible for
(2.22), then there exists some H such that (C,H) is feasible for (2.16).

Notice the trading strategy H does not appear at all in (2.22), so the first step with the
risk neutral computational approach, solving (2.22), is much easier than solving (2.16).
This leaves for the second and final step the computation of the trading strategy H that
generates the contingent claim C1, where C1 is time t = 1 consumption under the solution
of subproblem (2.22). Analogous to the optimal portfolio problem, these two steps can
be readily solved with standard methods.
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To solve (2.22) with a Lagrange multiplier, one first analyses the unconstrained prob-
lem

maximize u(C0)+E[u(C1)]−λ{C0 +E[C1L/B1]} (2.23)

(recall E[C1L/B1] = EQ[C1/B1]). With suitable assumptions about the utility function u
to ensure the optimal solution of (2.22) will feature strictly positive consumption values,
the following first order necessary conditions must be satisfied:

u′(C0) = λ and u′
(
C1(ω)

)
= λL/B1

Hence
C0 = I(λ ) and C1(ω) = I(λL/B1) (2.24)

where I(·) is the inverse of the marginal utility function u′(·). Of course, the Lagrange
multiplier λ must take the correct value, namely, the value such that the constraint in
(2.22) is satisfied. This is

I(λ )+EQ[I(λL/B1)/B1] = v (2.25)

As is the case with (2.13), the inverse function I is decreasing so this equation will
normally have a solution λ . If the corresponding values of C0 and C1, as given by (2.24),
are non-negative, then they must be an optimal solution of (2.22).

If this procedure yields a consumption value that is not non-negative, then a more
complicated algorithm must be used to derive the solution of (2.22). Such algorithms
are standard, although they will not be discussed here. Suffice it to say that in this case
it is still much easier to solve (2.22) than (2.16).

Example 2.3. Suppose u(c) = ln(c), so that u′(c) = 1/c and the inverse function I(i) =
1/i. Equations (2.24) and (2.25) become

C0 = 1/λ and C1(ω) = 1/(λL/B1)

and
1
λ

+
1
λ

EQ[L−1] =
1
λ

+
1
λ

E[1] =
2
λ

= v

so λ = 2/v, C0 = v/2, and C1(ω) = vB1(ω)P(ω)/[2Q(ω)]. Notice that these are non-
negative as long as v ≥ 0. Substituting these values gives the maximum value of the
objective function in (2.22) to be 2ln(v/2)+E[ln(B1/L)].

Example 2.1 and 2.3 (continued) With L(ω1) = 2/3, L(ω2) = L(ω3) = 4/3, and r =
1/9 as before, we have

C1(ω) = v
5
9

L−1 =

{
5
6v, ω = ω1

5
12v, ω = ω2,ω3
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Note that the equation in (2.15) as well as the necessary conditions (2.18) are satisfied,
as desired. We compute the optimal H1 and H2 by solving the system C1/B1 = v/2+G∗,
that is,

3
4

v =
1
2

v+0H1 +3H2

3
8

v =
1
2

v+2H1−1H2

3
8

v =
1
2

v−2H1−2H2

Although there are three equations and two unknowns, the solution is unique: H1 =
−v/48 and H2 = v/12. Since v/2 = H0 +6H1 +10H2, it follows that H0 =−(5/24)v.

In summary, principle (2.15) greatly simplifies the solution of the optimal consump-
tion investment problem because it allows one to decompose the original problem into
two simpler subproblems: in the first you solve for the optimal consumption process
without worrying about the trading strategy, and in the second you derive the trading
strategy that corresponds to the solution of the first subproblem.

The basic consumption investment problem (2.16) can be generalized in several di-
rections. For example, the objective function can be written as

u(C0)+βE[u(C1)] (2.26)

where the scalar β satisfies 0 < β ≤ 1. The idea here is to model the time-value of when
consumption occurs by regarding the specified parameter β as a discount factor.

A second generalization of (2.16) is to allow the consumer to have income or endow-
ment Ẽ at time t = 1, where Ẽ is a specified random variable. The optimization problem
thus is:

maximize u(C0)+E[u(C1)]

subject to C0 +H0B0 +
N

∑
n=1

HnSn(0) = v

C1−H0B1−
N

∑
n=1

HnSn(1) = Ẽ

C0 ≥ 0 C1 ≥ 0 H ∈ RN+1

(2.27)

The pair (v, Ẽ) is sometimes called the endowment process for the consumer.

Exercise 2.4. Derive formulas for λ , C0, and C1 for the consumption investment problem
in the case where the utility function is:

(a) u(c) =−exp{−c}.

(b) u(c) = γ−1cγ , where −∞ < γ < 1 and γ 6= 0.
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Exercise 2.5. Show that if the objective function for the consumption investment prob-
lem is as in (2.26), then the equation in (2.21) should be generalized to:

Q(ω) = βP(ω)B1(ω)
u′

(
C1(ω)

)

u′(C0)

Exercise 2.6. For the consumption investment problem (2.27) with an endowment, show
that the equation in (2.15) generalizes to

C0 +EQ
[
(C1− Ẽ)/B1

]
= v

Exercise 2.7. For example 1.4, suppose the initial wealth v = 100. Characterize the
set of all consumption processes C such that there is a trading strategy H making the
consumption-investment plan (C,H) admissible.

2.4 Mean-Variance Portfolio Analysis

Throughout this section it will be assumed that the interest rate r is deterministic, there
are no arbitrage opportunities, and there exists some portfolio with E[R] 6= r. A classical
problem in this case is to solve the mean-variance portfolio problem:

minimize var(R)

subject to E(R) = ρ
R is a portfolio return

(2.28)

where ρ is a specified scalar. Notice that for each value of ρ ≥ r, the feasible region in
(2.28) is non-empty (to see this, just take a suitable linear combination of the riskless
portfolio and a specific one with E[R] 6= r), and so the solution of (2.28) is well defined.
In particular, the optimal value of the objective function equals zero if and only if ρ = r;
otherwise, it will be a finite, positive number.

Recalling that the return for a portfolio can be expressed as

R =
H0

V0
r +

N

∑
n=1

[
HnSn(0)

V0

]
Rn

it follows that R is the return for a portfolio if and only if it can be written in the form
R = (1−F1− ·· · −FN)r + ∑FnRn where Fn can be interpreted as the fraction of time
t = 0 wealth that is invested in security n. Hence (2.28) can be rewritten as

minimize FCF ′

subject to (1−F1−·· ·−FN)r +∑FnR̄n = ρ
(2.29)

where C is the N ×N matrix of the covariances for the returns (its i jth element is
cov(Ri,R j), R̄n = ERn, and F ≡ (F1, . . . ,FN). This is a quadratic programming prob-
lem, a well-known kind of problem in the area of optimization theory, and it has been
the subject of extensive study by financial researchers and mathematical programmers.
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In this section, problem (2.28) will be solved with a different approach, one that relies
on the modern theory developed in section 2.2. Consider the following problem:

minimize var(V1)

subject to E[V1] = v(1+ρ)

V0 = v

(2.30)

Here the constraints identify the set of all time t = 1 portfolio values that can be achieved
starting with initial wealth v and which have mean v(1+ρ), where ρ ≥ r is as in (2.28)
and v > 0 is a specified scalar. Notice that if V̂1 is a solution of (2.30), then R̂≡ (V̂1−v)/v
satisfies the constraints in (2.28). Moreover, if R is any other return that is feasible for
(2.28), then V1 ≡ v(1 + R) satisfies E(V1) = v(1 + ρ), which means V1 is feasible for
(2.30). Hence

var(R̂) =
1
v2 var(V̂1)≤ 1

v2 var(V1) = var(R)

which means R̂ is a solution of (2.28). Conversely, a solution of (2.28) gives just as
easily a solution of (2.30), so really (2.28) and (2.30) are equivalent problems. In other
words,

The relationship V1 = v(1 + R) establishes a one-to-one correspondence
between feasible solution of (2.28) and (2.30).

(2.31)

You can see where we are headed: we want to reformulate (2.28) so we can apply the
results of section 2.2, and (2.30) is a step in this direction. For the next step, consider how
to solve (2.30) with a Lagrange multiplier. Introducing the scalar β , one is interested
in minimizing the objective function var(V1)−βE[V1], subject to the constraint V0 = v.
But var(V1) = E[V 2

1 ]− (EV1)2, so, as will be verified later, this objective function can be
written as E[1

2V 2
1 −βV1]. In other words, with the Lagrange multiplier approach we are

interested in solving

maximize E
[
−1

2
V 2

1 +βV1

]

subject to V0 = v.
(2.32)

Problem (2.32) is in the form studied in section 2.2, so applying the results there one
concludes the optimal solution, denoted V̂ , is given by (this is left as an exercise)

V̂ =
β

EQL
(EQL−L)+ v(1+ r)

L
EQL

(2.33)

in which case E[V̂ ] = β (EQL−1)/EQL+v(1+r)/EQL (recall L = Q/P is the state price
density). Now assuming Q and P are not identical, one has EQL > 1 (this is also left as
an exercise). Hence E[V̂ ] = v(1+ρ) if and only if

β =
v
[
(1+ρ)EQL− (1+ r)

]

EQL−1
(2.34)
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Substituting this into (2.33) means that V̂ is feasible for (2.30). If V is any other random
variable that is feasible for (2.30), then the facts that E[V̂ ] = E[V ] and that E[−1

2V̂ 2 +
βV̂ ]≥ E[−1

2V 2 +βV ] imply var(V̂ )≤ var(V ). Hence V̂ is an optimal solution of (2.30).
Conversely, suppose V̂ is a solution of (2.30) with β as in (2.34). If Vis any other

random variable that is feasible for (2.30), then E[−1
2V̂ 2 + βV̂ ] ≥ E[−1

2V 2 + βV ]. We
saw above that any solution of (2.32) must be feasible for (2.30), so we conclude that
V̂ must be an optimal solution of (2.32). The relationship between (2.30) and (2.32) is
summarized as follows:

Portfolio problems (2.30) and (2.32) are equivalent provided ρ and β are
related according to (2.34).

(2.35)

Notice according to (2.34) that β is a strictly increasing function of ρ which equals
v(1+ r) when ρ = r. Moreover, when ρ = r, the optimal solution (2.33) is V̂ = v(1+ r).
This is a constant, as anticipated.

Problem (2.32) has the standard form of sections 2.1 and 2.2 if the investor’s utility
function is taken to be the quadratic function u(w) =−w2/2+βw. Although quadratic
utility functions are dubious because they are not non-decreasing with respect to wealth
(this function is concave but attains its maximum value at w = β < ∞), they are accepted
for various applications. In particular, principle (2.31) implies there is a one-to-one
correspondence between solutions of the quadratic utility portfolio problem (2.32) and
solutions of the mean-variance portfolio problem (2.28).

This correspondence has a fundamental consequence. Looking at (2.33) we see that
the solution of (2.28) must be an affine1 function of the state price density. Indeed,
substituting (2.34) in (2.33) we compute that the return R̂ corresponding to V̂ is

R̂ =
ρEQL− r
EQL−1

− ρ− r
EQL−1

L (2.36)

Hence we conclude (this also could have been worked out using (2.12) for the case of a
quadratic utility function):

The optimal solution R of the mean-variance portfolio problem (2.28) is an
affine function of the state price density L.

(2.37)

A further consequence is realized if you tie this together with result (1.35) concerning
the relationship between the risk premium of an arbitrary portfolio and its beta with
respect to a portfolio whose return is an affine function of the state price density. It is
apparent that we have established the famous security market line result of the capital

1An affine function is equal to a constant plus a linear function.
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asset pricing model (CAPM) theory:

CAPM: If R′ is a solution of the mean-variance portfolio problem (2.28)
for ρ ≥ r and if R is the return of an arbitrary portfolio, then

E[R]− r =
cov(R,R′)

var(R′)
(
E[R′]− r

) (2.38)

This relationship is quite important, because in a world of mean-variance investors there
is often a portfolio (for example, a stock index) which can be assumed to be a solution
of (2.28) and whose mean return can be estimated, thereby giving via (2.38) estimates
of the mean return of arbitrary portfolios.

Principle (2.37) has another important consequence. Fix some arbitrary ρ̂ > r and
consider the corresponding return R̂ as given by (2.36). Think of R̂ as corresponding to
some portfolio or mutual fund that is available for investment. Suppose an investor puts
the fraction λ of his money in the riskless security and the balance 1−λ in this mutual
fund, where λ = (ρ̂ − ρ)/(ρ̂ − r) and ρ ≥ r (λ < 0 corresponds to borrowing at the
riskless rate). Since this portfolio’s return R = λ r +(1−λ )R̂, one can do some tedious
algebra to verify that, in fact, R is given precisely by (2.36), only with ρ instead of ρ̂
on the right hand side. Hence to achieve any solution of the mean-variance portfolio
problem (2.28) it is not necessary to trade the individual securities, provided there is a
mutual fund available which corresponds to one solution. It is just a question of dividing
up the invested funds between the riskless security and the mutual fund. Since all the
risky securities are in the mutual fund, it must mean that the relative proportions invested
in the risky securities (that is, the money invested in security n divided by the money
invested in the mutual fund) are constants with respect to ρ . This all can be summarized
as follows:

Mutual fund principle: Suppose you fix a portfolio whose return is a solu-
tion of the mean-variance portfolio problem (2.28) corresponding to some
mean return ρ̂ > r. Then the solution of (2.28) can be achieved for any
other mean return by a portfolio consisting of investments in just the risk-
less security and the fixed portfolio.

(2.39)

Hence a world of mean-variance investors is quite nice; it enjoys many nice proper-
ties. However, it should be stressed that many of these nice properties may disappear
in the presence of investors whose decisions are not consistent with quadratic utility
functions. For example, as seen in section 2.2, log utility investors will want to choose
portfolios whose time t = 1 values are proportional to the inverse of the state price den-
sity. In this case the time t = 1 wealth cannot, in general, be expressed as an affine
function of the state price density, and the security market line result will not hold with
respect to any portfolio in which the log utility investor would desire to invest his or her
money.

Indeed, it is almost a lucky accident that the CAPM security market line result holds



2.4. MEAN-VARIANCE PORTFOLIO ANALYSIS 49

Table 2.1: Data for example 2.4

ω1 ω2 ω3

R1(ω) 0.2 −0.2 0.05

R2(ω) 0.15 0 0.1

P(ω) 1/3 1/3 1/3

R∗1(ω) 0.2−r
1+r

−0.2−r
1+r

0.05−r
1+r

R∗2(ω) 0.15−r
1+r

−r
1+r

−0.1−r
1+r

Q(ω) 0.258+4.52r 0.355−1.3r 0.387−3.22r

L(ω) 0.774+13.56r 1.065−3.9r 1.161−9.66r

for a reasonable class of utility functions. With most utility functions the return of
the optimal portfolio will not be an affine function of the state price density and thus
cannot play the role of R′ in (1.35). Result (1.35) is more fundamental in the sense
that it applies to any single period securities market provided its general hypotheses
are satisfied, whereas the CAPM result (2.38) is a special case or corollary. But the
general version is not particularly useful unless you can identify R′ with an economically
meaningful portfolio. In the mean-variance world you can do this, and that is why the
CAPM result (2.38) is so important.

Example 2.4. Suppose N = 2, K = 3, and the return processes Rn and the probability
measure P are as indicated in table 2.1. Solving EQR∗n = 0 for the risk neutral proba-
bility measure Q, it is apparent that this exists, provided r < 0.387/3.22 = 0.12. These
quantities along with the resulting state price density L are displayed in table 2.1.

To solve the classical mean-variance problem (2.29), we first compute ER1 = ER2 =
1/60, var(R1) = 0.02722, var(R2) = 0.01056, and cov(R1,R2) = 0.00805. Assuming
(for simplicity) from now on that r = 0, this leads to the solution F1 = 6.95ρ and F2 =
53.05ρ . Hence, for example, if ρ = 1 percent, then 6.95 percent of the funds should
be invested in the first risky security, 53.05 percent in the second risky security, and 40
percent in the riskless security. Moreover, the return of the resulting portfolio is

R = F1R1 +F2R2 =





0.0936, ω = ω1

−0.0140, ω = ω2

−0.0496, ω = ω3

Alternatively, using formulas (2.33) and (2.34) one computes EQL = 1.027, β = v[1+
38.04ρ], V̂ = v(1 + 38.04ρ − 37.04ρL], and R̂ = 38.04ρ − 37.04ρL. To get F1 and F2,
you solve R̂ = F1R1 + F2R2. Hence, for example, if ρ = 1 percent, then you get the
values already presented above.

Exercise 2.8. With Q a risk neutral probability measure, P the original probability mea-
sure, and L the corresponding state price density, show that EQL ≥ 1, with equality if
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and only if Q = P (hint: minimize ∑Q2(ωk)/P(ωk) subject to suitable constraints).

Exercise 2.9. Verify equation (2.33).

Exercise 2.10. Verify the assertion made in connection with the mutual fund principle
(2.39): R = λ r +(1−λ )R̂ satisfies (2.36), where λ = (ρ̂−ρ)/(ρ̂− r).

2.5 Portfolio Management with Short Sales Restrictions and Similar Con-
straints

The basic optimal portfolio problem studied in earlier sections may be inappropriate for
many practical situations because important constraints are ignored. For example, the
investor might be prohibited by stock exchange rules from selling stocks short or from
financing the purchase of stocks by borrowing money. Consequently, it is important to be
able to solve versions of problem (2.1) where constraints are imposed on the admissible
trading strategies.

In actual situations it is usually more natural to express the constraints in terms of the
fractions Fn ≡ HnSn(0)/V0 of money invested in security n, n = 1, . . . ,N, rather than in
terms of the number Hn of shares invested in security n. For example, no short selling
of security n is Fn ≥ 0, no borrowing from the bank account is F1 + · · ·+ FN ≤ 1, and a
stipulation that no more than 4 percent of the wealth can be invested in security n is Fn ≤
0.04. In general, therefore, the constraints of interest will be expressed by stipulating
that F ≡ (F1, . . . ,FN) ∈ K, where K ⊂ RN is a specified subset that is assumed to be
closed and convex. In order to simplify the presentation later in this section, it will
also be assumed that the strategy 0 ∈ K, that is, it is always feasible to invest all the
funds in the bank account. For example, K is equal to {F ∈ RN : Fn ≥ 0}, {F ∈ RN :
F1 + · · ·+FN ≤ 1}, and {F ∈RN : Fn ≤ 0.04}, respectively, in the three cases mentioned
just above.

With the trading strategy expressed in the form F , it is convenient to express the time
t = 1 wealth V1 = V0(1 + R) in terms of R, the return process for the portfolio. In view
of (1.32) this is

R =

(
1−

N

∑
n=1

Fn

)
r +

N

∑
n=1

FnRn = r +
N

∑
n=1

Fn(Rn− r)

where Rn is the return process for security n. Hence the optimal portfolio problem can
be written as

maximize
F∈K

Eu

(
v

(
1+ r +

N

∑
n=1

Fn(Rn− r)

))
(2.40)

where v = V0 is the initial value of the portfolio.
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It is straightforward to solve this kind of problem with traditional methods, similar
to those used in section 2.1 for the unconstrained problem. This is best explained by
considering a simple example.

Example 2.5. The security processes are the same as in example 2.4, but now r = 0,
P(ω1) = 0.26, P(ω2) = P(ω3) = 0.37, and the utility function is the log function. Thus
the objective function is

0.26ln[1+0.2F1 +0.15F2]+0.37ln[1−0.2F1]+0.37ln[1+0.05F1−0.1F2]

and the corresponding partial derivatives are

∂
∂F1

=
0.052

1+0.2F1 +0.15F2
− 0.074

1−0.2F1
+

0.0185
1+0.05F1−0.1F2

and
∂

∂F2
=

0.039
1+0.2F1 +0.15F2

− 0.037
1+0.05F1−0.1F2

Hence the optimal solution for the unconstrained problem, obtained by setting these
partials equal to zero, is F1 =−0.21333 and F2 = 0.33467.

Now suppose that short sales of the risky securities are prohibited. that is, K= {F ∈
R2 : F1 ≥ 0 and F2 ≥ 0}. In this case the unconstrained optimal solution is not feasible,
and so we must do some more work. It is apparent that the new optimal solution must be
on the boundary of K at a point where the directional derivative is normal to K. In view
of the unconstrained optimal solution, we conjecture the new optimal solution satisfies
F1 = 0 and F2 ¿ 0. We therefore look for a point satisfying F1 = 0, F2 > 0, ∂/∂F2 = 0,
and ∂/∂F1 < 0. Using the above expressions for the partials, we readily compute the
optima! solution for the constrained problem to be F1 = 0 and F2 = 0.21164. Note that
the optimal attainable wealth is

W = v[1+F1R1 +F2R2] =





1.03175v, ω = ω1

v, ω = ω2

0.97884v, ω = ω3

and the optimal objective value is

E lnW = lnv+0.26ln(1.03175)+0.37ln(0.97884) = lnv+0.00021

To summarize the traditional method for solving problem (2.40), first obtain the un-
constrained optimal solution and check to see if it is feasible; if not, then look for a point
on the boundary of K where the directional derivative is normal to K, using the partial
derivatives throughout. While this method was easy to apply in the case of example 2.5,
the computations could become formidable in a case where there are many securities
and/or there is a different kind of utility function. Furthermore, these computational
difficulties are compounded when dealing with multiperiod models. We therefore are
interested in an alternative method, a risk neutral computational approach.
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The risk neutral computational approach for constrained portfolio problems is roughly
as follows. For each value of a parameter κ contained in a certain subset K̃⊂RN define
a modified securities market denoted Mκ (κ = 0 corresponds to the original market).
Then consider the unconstrained problem for the market Mκ . In particular, using the
formulas developed in section 2.2 focus on the optimal objective value, denoted Jκ(v).
for each κ ∈ K̃. Then solve the dual problem:

minimize
κ∈K̃

Jκ(v) (2.41)

If κ̂ denotes the optimal solution of (2.41), then the optimal solution for the uncon-
strained problem in the market Mκ will turn out to be the optimal solution for the
constrained problem in the original market M0. Moreover, the corresponding optimal
objective values will coincide.

Although the risk neutral computational approach still requires one to solve a con-
strained optimization problem with traditional methods, it turns out that solving (2.41)
is often easier than solving (2.40).

Turning to some details, the set K̃ is simply

K̃≡ {
κ ∈ RN : δ (κ) < ∞

}

where the function δ : RN → R∪{+∞} is defined by

δ (κ)≡ sup
F∈K

(Fκ ′)

and κ ′ denotes the transpose of the row vector κ . The function δ is convex and is
called the support function of −K. Notice that δ is non-negative, because 0 ∈ K. It
will be assumed that K is such that is continuous on K̃. The set K̃, called the effective
domain of δ , is a convex cone that contains the point κ = 0. For example, if K ={

F ∈ RN : Fn ≥ 0,n = 1, . . . ,N
}

, then

δ (κ) =

{
0, κ ∈K
∞, κ 6∈K

(2.42)

and K̃=K. For another example, if K=
{

F ∈ RN : F1 + · · ·+FN ≤ 1
}

, then

δ (κ) =

{
−λ , κ1 = · · ·= κN = λ ≤ 0

∞, otherwise
(2.43)

and K̃=
{

κ ∈ RN : κ1 = · · ·= κn ≤ 0
}

.
To define the auxiliary market Mκ for each κ ∈ K̃, we simply modify the return

processes for the bank account and the risky securities according to

r → r +δ (κ)

Rn → Rn +δ (κ)+κn, n = 1, . . . ,N
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In other words, in the market Mκ the bank’s interest rate is replaced by the original rate
plus the non-negative quantity δ (κ), and so forth. Notice that the case κ = 0 does indeed
coincide with the original market.

In order to solve the unconstrained problem in the market Mκ , we will need to use
the corresponding risk neutral probability measure, which is denoted Qκ . Throughout
this section it will be assumed that the risk neutral probability measure Q = Q0 for
the original market exists and is unique. Since Q0 is the unique probability measure
satisfying

EQ

(
Rn− r
1+ r

)
= 0, n = 1, . . . ,N

it follows for other κ ∈K that Qκ must be a probability measure satisfying for Q = Qκ

EQ

(
Rn +κn− r

1+ r +δ (κ)

)
= 0, n = 1, . . . ,N (2.44)

It is not clear whether Qκ will exist for all κ ∈ K̃, but a unique Qκ will exist and the
function κ → Qκ will be continuous at least for all κ ∈ K in some open neighborhood
of κ = 0, by the assumed continuity of δ (·).

In the market Mκ the state price density and the bank account process are denoted
respectively by

Lκ ≡ Qκ
P

and Bκ
1 = 1+ r +δ (κ)

Moreover, given any trading strategy F , the time t = 1 value of the portfolio in the market
Mκ is given by

V κ
1 = v(1+Rκ) = v

[
1+ r +δ (κ)+

N

∑
n=1

Fn(Rn +κn− r)

]

= v

[
1+ r +

N

∑
n=1

Fn(Rn− r)+δ (κ)+
N

∑
n=1

Fnκn

]

= V 0
1 + v[δ (κ)+Fκ ′]

(2.45)

It is important to note that if F ∈K, then by the definition of δ (·) one has δ (κ)+Fκ ′≥ 0,
in which case V κ

1 ≥V 0
1 . On the other hand, if F 6∈K, then possibly δ (κ)+ Fκ ′ < 0, in

which case V κ
1 < V 0

1 and Eu(V κ
1 ) < Eu(V 0

1 ). This is the reason why it is possible to have
the optimal objective values satisfy Jκ(v) < J0(v).

We are now in a position to illustrate how the risk neutral computational approach
works.

Example 2.5 (continued) With K = {F ∈ R2 : F1 ≥ 0,F2 ≥ 0}, we have K̃ = K and
δ (·) as in (2.42) above. With r = δ (κ) = 0 for κ ∈ K̃, (2.44) reduces to

0.2Qκ(ω1)−0.2Qκ(ω2)+0.05Qκ(ω3) =−κ1

0.15Qκ(ω1)−0.1Qκ(ω3) =−κ2
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Solving this system along with EQκ [1] = 1 leads to

Qκ(ω) =





[8−40κ1−100κ2]/31, ω = ω1

[11+100κ1−60κ2]/31, ω = ω2

[12−60κ1 +160κ2]/31, ω = ω3

These probabilities are strictly positive, and thus Qκ is a valid risk neutral probability
measure for the market Mκ , as long as κ ∈ K̃ and 40κ1 +100κ2 < 8.

The next step is to solve the unconstrained optimization problem for the market Mκ .
Letting Wκ , denote the corresponding optimal attainable wealth, we have by exercise 2.2
in section 2.2

Wκ = vBκ
1 /Lκ = vP/Qκ (2.46)

Moreover, the optimal value of the objective function is

Jκ(v) = ln(v)−E ln(Lκ/Bκ
1 ) = ln(v)+E lnP−E lnQκ

= ln(v)+ [0.26ln(0.26)+2(0.37) ln(0.37)]

− [0.26ln(8−40κ1−100κ2)+0.37ln(11−100κ1−60κ2)

+0.37ln(12−60κ1 +160κ2)− ln(31)]

(2.47)

The next step is to minimize Jκ(v) with respect to κ ∈ K̃. In view of the preceding
expression, this is the same as solving

maximize 0.26ln(8−40κ1−100κ2)+0.37ln(11−100κ1−60κ2)

+0.37ln(12−60κ1 +160κ2)

subject to κ1 ≥ 0, κ2 ≥ 0

Using partial derivatives in the standard way, the optimal solution is computed to be
κ̂1 = 0.0047 and κ̂2 = 0. Substituting these values in (2.46) and (2.47) yields the same
values for the optimal attainable wealth and the optimal objective value as were obtained
earlier with the traditional approach.

Why does this risk neutral approach work? The key is expression (2.45) for the attain-
able wealths in the market Mκ as well as the observations made immediately thereafter.
By the same considerations, the optimal objective value for the constrained problem in
the original market M0, which we denote by J(v), must be less than or equal to the
optimal objective value for the constrained problem in the market Mκ for any κ ∈ K̃.
And the latter, of course, must be less than or equal to the optimal objective value for
the unconstrained problem in the market Mκ . Hence we must have

J(v)≤ Jκ(v), all κ ∈ K̃ (2.48)

Apparently this inequality can be an equality for the κ that minimizes the right hand side
of (2.48), as explained in the following.
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Suppose for some κ̂ ∈ K̃ that F , the optimal trading strategy for the uncon-
strained portfolio problem in the market Mκ̂ , satisfies

(a) F ∈K
(b) δ (κ̂)+F κ̂ ′ = 0.

Then F is optimal for the constrained problem in the original market M0,
and J(v) = Jκ̂(v)≤ Jκ(v) for all κ ∈ K̃.

(2.49)

To see this, note by (2.45) that (b) implies W , the attainable wealth under F in the
market Mκ̂ , satisfies

W = v

[
1+ r +

N

∑
n=1

Fn(Rn− r)

]

which means that W is also the attainable wealth under F in the original market M0.
Since F is feasible for the constrained problem, it follows that Eu(W ) ≤ J(v). But
Eu(W ) = Jκ̂(v), so by (2.48) we must have Eu(W ) = J(v) = Jκ̂(v)≤ Jκ(v) for all κ ∈ K̃.

In summary, the obvious candidate for the κ̂ in (2.49) is the solution of the dual
problem (2.41). Having computed this κ̂ , you then verify whether F , the optimal trading
strategy for the unconstrained optimal portfolio problem in the market Mκ̂ , satisfies
F ∈ K and δ (κ̂) + F κ̂ ′ = 0 (there is no guarantee that both these conditions will be
satisfied, but in a wide variety of cases they will both automatically hold). If so, then F
will be optimal for the constrained problem in the original market M0.

This section concludes with another example.

Example 2.6. The security processes are the same as in examples 2.4 and 2.5, but
now r = 0, P(ω1) = P(ω2) = P(ω3) = 1/3, the utility function is the log function,
and borrowing funds from the bank is prohibited. Thus K = {F ∈ R2 : F1 + F2 ≤ 1},
K̃= {κ ∈ R2 : κ1 = κ2 ≤ 0}, and

δ (κ) =

{
−λ , κ1 = κ2 = λ ≤ 0

∞, otherwise,

and so for ease of exposition we will identify the vector κ ∈ K̃ with the scalar λ ≤ 0.
The interest rate for the bank account in the market Mκ will be −λ , but the return

processes for the risky securities in the market Mκ will be the same as in the original
market M0. Hence by (2.44) the risk neutral probability measure Qκ can be obtained by
solving the system

0.2Qκ(ω1)−0.2Qκ(ω2)+0.05Qκ(ω3) =−λ
0.15Qκ(ω1) −0.1Qκ(ω3) =−λ

Qκ(ω1) +Qκ(ω2) +Qκ(ω3) = 1



56 CHAPTER 2. SINGLE PERIOD CONSUMPTION AND INVESTMENT

This leads to

Qκ(ω) =





[8−140λ ]/31, ω = ω1

[11+40λ ]/31, ω = ω2

[12+100λ ]/31, ω = ω3

These probabilities are all strictly positive and thus Qκ is a legitimate risk neutral prob-
ability measure if −0.12 < λ ≤ 0.

With Bκ
1 = (1−λ ), the optimal objective value for the unconstrained problem in the

market Mκ is given by

Jκ(v) = ln(v)−E ln(Lκ/Bκ
1 ) = ln(v)−E lnQκ +E lnP+ ln(1−λ )

Hence dual problem (2.41) amounts to the same thing as

maximize
−0.12<λ≤0

1
3

ln(8−140λ )+
1
3

ln(11+40λ )+
1
3

ln(12+100λ )− ln(1−λ )

Although this objective function is not concave on the real line, the solution of this
constrained problem is easily found to be approximately λ = −0.00711, that is, κ̂ =
(−0.00711,−0.00711).

The next step is to compute the optimal trading strategy F for the unconstrained
problem in the market Mκ̂ . The corresponding optimal attainable wealth is

Wκ̂ = vBκ̂
1 /Lκ̂ =

1.0071vP
Qκ̂

=





1.157v, ω = ω1

0.972v, ω = ω2

0.921v, ω = ω3

so F can be computed by solving (2.45), that is,

Wκ̂(ω) = v
[
1.00711+F1

(
R1(ω)−0.00711

)
+F2

(
R2(ω)−0.00711

)]

This yields F = (0.14,0.86). Clearly F ∈ K and δ (κ̂)+ F κ̂ ′ = 0, so by (2.49) F must
be the optimal solution for the constrained problem. Substituting κ̂ = −0.00711 in the
above expression for Jκ(v) gives the optimal objective value equal to lnv+0.01171.

Exercise 2.11. Solve example 2.6 assuming P(ω1) = 0.5, P(ω2) = 0.3, and P(ω3) = 0.2.

2.6 Optimal Portfolios in Incomplete Markets

Throughout this chapter up to this point it has been assumed that the model is complete,
a crucial assumption for the risk neutral computational approach. Under this assumption
the set of attainable wealths is easy to identify and characterize, and so after using convex
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optimization theory to identify the optimal attainable wealth, one is assured of finding
the trading strategy which generates this wealth. In the case of incomplete markets the
principles are the same, but more work must be done to properly identify the set of
attainable wealths. Having done so, one computes the optimal attainable wealth and
finally the trading strategy which generates this wealth, the same as before.

Of course, one could always revert to the standard approach, working with the first
order necessary conditions and so forth, exactly the same as described in section 2.1.
The standard approach is no more difficult with incomplete than with complete models,
so the relative advantages of the risk neutral computational approach are diminished in
the case of incomplete models. However, the risk neutral approach is still preferred
when dealing with certain utility functions and, as will be seen later, when analyzing
multiperiod models.

It turns out there is even a third approach for solving optimal portfolio problems
in incomplete markets. This approach relies on the constrained optimization methods
presented in the preceding section, and so it lends itself well to the introduction of short
sales restrictions and/or similar constraints. The idea is to introduce fictitious securities
to the market in such a way as to make the model complete, and then use constraints
to prohibit any positions in these fictitious securities. This fictitious security approach
will be described later in this section, after examining the risk neutral computational
approach.

A key to the identification of the set of attainable wealths is principle (1.23), which
says that a contingent claim (i.e., wealth) W is attainable if and only if EQ[W/B1] takes
the same value for every risk neutral probability measure Q ∈M. Thus Wv, the set of
wealths that can be generated starting with initial capital v, is given by Wv = {W ∈
RK : EQ[W/B1] = v, all Q ∈M}. But this characterization of Wv is not practical, be-
cause with incomplete models the set M of risk neutral probability measures contains
an infinite number of elements. This difficulty is resolved with the help of relationship
(1.17), which says that M is the intersection of a linear subspace and the set of strictly
positive probability measures. In particular, there exists a finite number of independent
vectors in M̄ (the closure of M), say Q(1),Q(2), . . . ,Q(J), such that each element of
M can be expressed as a linear combination of these J vectors (see the linear program
(1.25)), where the weights, some of which can be zero or negative, add up to one. Hence
EQ[W/B1] = v for all Q ∈M if and only if EQ( j)[W/B1] = v for j = 1, . . . ,J, and so

Wv =
{

W ∈ RK : EQ( j)[W/B1] = v for j = 1, . . . ,J
}

It follows that the optimal portfolio problem (2.1) (or (2.9)) can be written as

maximize Eu(W )

subject to EQ( j)[W/B1] = v, j = 1, . . . ,J
(2.50)

As in section 2.2, problem (2.50) can be solved by introducing J Lagrange multipliers
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as well as J corresponding state price densities L j ≡ Q( j)/P:

maximize Eu(W )−
J

∑
j=1

λ jE[L jW/B1] (2.51)

The first order necessary conditions, one for each ω ∈Ω are:

u′
(
W (ω)

)
=

J

∑
j=1

λ jL j(ω)/B1(ω), all ω ∈Ω

or

W (ω) = I

[
J

∑
j=1

λ jL j(ω)/B1(ω)

]
, all ω ∈Ω (2.52)

where I(·) is the inverse function of u′. This gives the solution of (2.51) as a function of
the J Lagrange multipliers. Substituting this expression into the J constraints of (2.50)
enables one to solve for the values of the Lagrange multipliers which provide the solution
of (2.50). In other words, substituting the values of the Lagrange multipliers satisfying

E[L jI(λ1L1/B1 + · · ·+λJLJ/B1)/B1] = v, j = 1, . . . ,J (2.53)

into (2.52) provides the optimal solution of (2.50). From this solution, the optimal at-
tainable wealth, one finally computes the optimal trading strategy in the usual way.

The system (2.53) will normally have a unique, non-negative solution, depending
upon the properties of the utility function. If the utility function is strictly concave,
then the solution of (2.50) will be unique. This computational procedure will now be
illustrated with an example.

Example 2.7. The securities model is the same as in example 1.2, namely, K = 3, N = 1,
r = 1/9, S0 = 5, and

ω S1(ω) S∗1(ω) P(ω)
ω1 20/3 6 1/3
ω2 40/9 4 1/3
ω3 30/9 3 1/3

In chapter 1 it was established that this model is incomplete with M consisting of all
probability measures of the form

Q = (θ ,2−3θ ,−1+2θ), where
1
2

< θ <
2
3

and with a contingent claim X = (X1,X2,X3) being attainable if and only if

X1−3X2 +2X3 = 0 (2.54)

In this case a ‘basis’ forM can be obtained by taking any two distinct elements ofM. In
fact, one can take the two endpoints, corresponding to θ = 1/2 and θ = 2/3, and this is
what we will do:

Q(1) = (1/2,1/2,0) Q(2) = (2/3,0,1/3)
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L1 = (3/2,3/2,0) L2 = (2,0,1)

Taking u(ω) = ln(ω) one has u′(ω) = 1/ω and I(i) = 1/i, so system (2.53) becomes,
after a little algebra,

1
3λ1 +4λ2

+
1

3λ1
= v

4
9λ1 +12λ2

+
1

3λ2
= v

The unique, non-negative solution is found to be

λ1 = 0.46482v−1 λ2 = 0.53519v−1

Substituting these values into (2.52) yields

W (ω) =
v

0.46482(9/10)L1(ω)+0.53519(9/10)L2(ω)

=





0.62860v, ω = ω1

1.59360v, ω = ω2

2.07611v, ω = ω3

for the optimal attainable wealth. Notice, as verification, that W satisfies equation (2.54).
Solving H0 +6H1 = (9/10)(0.6286)v and H0 +4H1 = (9/10)(1.5936)v for the optimal
trading strategy yields

H0 = 3.17124v and H1 =−0.43425v

The optimal objective value is 0.24409+ lnv.

In summary, the risk neutral computational approach for incomplete models is essen-
tially the same as for complete models, but the computational difficulties are increased
due to the need to first specify and then cope with the additional constraints in (2.50).

We now turn to an alternative computational approach that features fictitious securi-
ties. The idea is to add one or more securities to the model in such a way as to make
it complete (without, of course, creating any arbitrage opportunities). Then one solves,
using the methods of the preceding section, the optimal portfolio problem with the con-
straint that no position can be taken in any of the added, fictitious securities. Since this
optimization problem is done for a complete market, the computations may be simpler
than with the two alternative approaches, even with the constraints.

While this concept is simple, a key step is to properly specify the added, fictitious
securities. A good way to do this is to work with the K×N matrix A of chapter 1:

A =




B1(ω1) S1(1)(ω1) · · · SN(1)(ω1)
B1(ω2) S1(1)(ω2) · · · SN(1)(ω2)

...
...

...
B1(ωK) S1(1)(ωK) · · · SN(1)(ωK)



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This matrix has rank less than K, since the market is incomplete. We need to add some
fictitious securities, that is, column vectors of non-negative numbers to A, so that the
rank of A becomes equal to K. When selecting column vectors one must be careful to
avoid adding arbitrage opportunities. A little linear algebra will ensure a successful re-
sult, as illustrated in the following example.

Example 2.7 (continued) It suffices to add one fictitious security, so that the matrix
A has the form

A =




10/9 60/9 S2(1)(ω1)
10/9 40/9 S2(1)(ω2)
10/9 30/9 S2(1)(ω3)




Taking, for instance, S2(1) = (50/9,20/9,70/9), it is easy to verify that the matrix A
will have full rank 3. Since all the risk neutral probabilities in the original market satisfy
Q = (θ ,2− 3θ ,−1 + 2θ) for 1/2 < θ < 2/3, it follows that the unique risk neutral
probability measure in the new market must be of this form as well. Taking, for instance,
θ = 7/13 gives Q = (7/13,5/13,1/13) as well as S2(0) = EQ[(9/10)S2(1)] = 4.

It remains to solve the optimal portfolio problem in the new market with the con-
straint that positions in security #2 are prohibited. Taking the approach described in the
preceding section, this means that F= {F ∈ R2 : F2 = 0},

δ (κ) = sup
F∈K

(−Fκ ′) = sup
F1∈R

(−F1κ1) =

{
0, κ1 = 0

∞, otherwise

and K= {κ ∈ R2 : κ1 = 0}. The return processes in the market Mκ are

ω1 ω2 ω3

R1(ω) 1/3 −1/9 −1/3
R2(ω) 7/18+κ2 −4/9+κ2 17/18+κ2

and the corresponding risk neutral probability measure is computed to be

Qκ(ω) =





7/13− (18/65)κ2, ω = ω1

5/13+(54/65)κ2, ω = ω2

1/13− (36/65)κ2, ω = ω3

Notice that these probabilities are strictly positive as long as −25/54 < κ2 < 5/36.
Since Bκ

1 = 10/9 and we are still using log utility, the optimal objective value for the
unconstrained problem in the market Mκ is Jκ(v) = lnv− ln(9/10)−E lnQκ + E lnP.
The dual problem is therefore the same as maximizing E lnQκ over K̃, that is, with re-
spect to κ2 over the interval (−25/54,5/36). Some simple calculus provides the optimal
solution: κ̂ = (0,−0.18321).
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The corresponding optimal attainable wealth is

Wκ̂ = vBκ̂
1 /Lκ̂ =

10v
27Qκ̂

=





0.62860v, ω = ω1

1.59360v, ω = ω2

2.07611v, ω = ω3

which is seen to be generated by the trading strategy F = (−2.17125,0). Since F ∈ K
and δ (κ̂)+ F κ̂ ′ = 0, it follows that this is also the optimal solution for the constrained
problem as well as for the original unconstrained problem in the incomplete market.

A virtue of the fictitious securities approach is that it readily lends itself to problems
which have short sales restrictions or similar constraints on the real securities. One pro-
ceeds in exactly the same way, only choosing the constraint set K so as to capture the
explicit constraints on the real securities as well as the prohibition from taking a position
in the fictitious securities. A return to the same example will illustrate this.

Example 2.7 (continued) Suppose we prohibit short sales, so the solution obtained
earlier is now infeasible. With the fictitious security the same as before, take K= {F ∈
R2 : F1 ≥ 0,F2 = 0}, so that

δ (κ) = sup
F∈K

(−Fκ ′) = sup
F1≥0

(−F1κ1) =

{
0, κ1 ≥ 0

∞, otherwise

and K̃= {κ ∈ R2 : κ1 ≥ 0}. The return processes in the market Mκ are

ω1 ω2 ω3

R1(ω) 1/3+κ1 −1/9+κ1 −1/3+κ1

R2(ω) 7/18+κ2 −4/9+κ2 17/18+κ2

and the corresponding risk neutral probability measure is

Qκ(ω) =





7/13− (45/26)κ1− (18/65)κ2, ω = ω1

5/13+(9/13)κ1 +(54/65)κ2, ω = ω2

1/13+(27/26)κ1− (36/65)κ2, ω = ω3

Note these probabilities are strictly positive on the triangular subset of R2 where κ2 <

−(25/4)κ1 +35/18, κ2 >−(5/6)κ1−25/54, and κ2 < (15/8)κ1 +5/36. The optimal
objective value for the unconstrained problem in the market Mκ has the same form as
before, so the dual problem comes down to maximizing E lnQκ . on the intersection of
this triangular subset with the half-plane where κ1 ≥ 0. Using the first order conditions,
it is easy to verify that κ̂ = (4/27,−5/27) is the optimal solution. Corresponding to this
are Qκ = (1/3,1/3,1/3) and Wκ̂ = 10v/(27Qκ̂) = (10v/9)(1,1,1), both constants on Ω.
The trading strategy that generates Wκ̂ is easily computed to be F = (0,0), that is, invest
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all the money in the bank account. Clearly F ∈K and δ (κ̂)+F κ̂ ′ = 0, so F is also the
optimal trading strategy for the original constrained optimal portfolio problem, which is
what we suspected from the start. The optimal objective value is lnv+ ln(10/9).

Exercise 2.12. Solve example 2.7 with P(ω1) = 0.5, P(ω2) = 0.3, and P(ω3) = 0.2,
assuming

(a) short sales are allowed,

(b) short sales are prohibited.

2.7 Equilibrium Models

Until now, the specification of the security price processes S1,S2, . . . ,SN , has been part of
the data, external to the model. But it is important to understand prices, and so financial
economists develop and study models where the price processes are internal, that is,
endogenous.

An important category of models of this type is the class of equilibrium models.
Sometimes the prices at both time t = 0 and time t = 1 are internal. Other times, and
this is the kind of equilibrium model that will be looked at in this section, the prices at
time t = 1 are specified and only the prices at time t = 0 are internal.

The data for the one-period equilibrium model will consist of the sample space Ω,
the probability measure P, the bank account process B, and the N random variables
S1(1),S2(1), . . . ,SN(1) representing the time t = 1 prices of the risky securities, in ad-
dition, there are I investors (or traders or consumers), numbered i = 1,2, . . . , I. Corre-
sponding to each trader is a utility function ui (differentiable, concave, strictly increas-
ing) and an endowment process (vi,Ei).

Internal to the model are three kinds of variables: the time t = 0 security prices
S1(0),S2(0), . . . ,SN(0); a consumption process Ci = (Ci

0,C
i
1) for each investor; and a

trading strategy H i = (H i
0,H

i
1, . . . ,H

i
N) for each investor. The equilibrium solution con-

cept involves finding values of all these variables such that a set of internally consistent
conditions is satisfied. In particular, The variables Sn(0), n = 1, . . . ,N, and {Ci,H i},
i = 1, . . . , I, are said to be an equilibrium solution if for each i the consumption invest-
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ment plan (Ci,H i) is optimal for investor i, that is, (Ci,H i) is a solution of

maximize u(Ci
0)+E[ui(Ci

1)]

subject to Ci
0 +H i

0B0 +
N

∑
n=1

H i
nSn(0) = vi

Ci
1−H i

0B1−
N

∑
n=1

H i
nSn(1) = Ei

H i ∈ RN+1

(2.55)

and the security market clears, that is, the aggregate demand for each security is zero,
that is

I

∑
i=1

H i
n = 0 for n = 0,1, . . . ,N (2.56)

Note that (2.55) does not include any explicit constraints requiring the consumption
to be non-negative; if negative consumption is a problem, then one could specify utility
functions that would force the consumption to be non-negative. It is possible to add
explicit non-negativity constraints, but doing so would make the analysis of the equilib-
rium model more complicated. The requirement (2.56) that aggregate demand be zero
does not make much sense for securities such as stocks and bonds, but it does hold per-
fectly well for things like futures contracts. Alternatively, one can imagine that some
individuals act as firms, raising capital by selling stocks and bonds, and investing in the
technologies that produce returns. These individuals are short the securities while ev-
erybody else is long. In the aggregate, the net positions in the securities are zero, and
real aggregate wealth is equal to the total investment in the fundamental technologies.

Since the traders have strictly increasing utility functions, if there exists a solution
to the equilibrium problem, then by (2.21) there must exist a risk neutral probability
measure, say Q. It follows, therefore, that the time t = 0 prices must satisfy

Sn(0) = EQ[Sn(1)/B1]

Hence if we can derive the equilibrium consumption processes, then everything else
will fall into place: (2.21) and the preceding equation will provide time zero prices,
and investor i’s trading strategy H i will be the one which generates the contingent claim
Ci

1−Ei (assuming Ci
1−Ei is attainable for all i, which will be the case if the model is

complete).
Unfortunately, ills rather difficult to compute equilibrium consumption processes.

In fact, an equilibrium solution does not necessarily exist, in general, so we shall not
attempt to compute one. We shall need to be content with a study of the relationship
between the equilibrium solution and something called Pareto efficiency.

But first notice that if you add up the time t = 0 budget constraint in (2.55) across i
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and rearrange terms you get

B0

I

∑
i=1

H i
0 +

N

∑
n=1

Sn(0)
I

∑
i=1

H i
n =

I

∑
i=1

vi−
I

∑
i=1

Ci
0

In view of (2.56), if this is an equilibrium solution, then the left hand side equals zero, in
which case the same can be said for the right hand side. One obtains a similar conclusion
from the time t = 1 budget constraint in (2.55), and so

If the consumption processes Ci, i = 1, . . . , I, are part of an equilibrium
solution, then

I

∑
i=1

Ci
0 =

I

∑
i=1

vi and
I

∑
i=1

Ci
1 =

I

∑
i=1

Ei

(2.57)

A collection of consumption processes satisfying these two equations is said to be
feasible. In other words, the aggregate consumption equals the aggregate endowment,
which is a kind of budget constraint.

The collection {Ĉ1,Ĉ2, . . . ,ĈI} of consumption processes is said to be Pareto efficient
if they are feasible (as in (2.57)) and there is no other collection {C1,C2, . . . ,CI} of
feasible consumption processes such that

ui(Ci
0)+Eui(Ci

1)≥ ui(Ĉi
0)+Eui(Ĉi

1), i = 1, . . . , I (2.58)

with this inequality being strict for at least one i.
The condition for Pareto efficiency says that there is no feasible collection of con-

sumption processes such that all of the investors are just as happy as they would be under
the feasible collection {Ĉ1,Ĉ2, . . . ,ĈI}, with at least one being strictly happier. Hence
one might conjecture that a necessary and sufficient condition for {Ĉ1,Ĉ2, . . . ,ĈI} to be
part of an equilibrium solution is that it be Pareto efficient. While this is not exactly
right, we do have the following:

If the model is complete and {Ĉ1,Ĉ2, . . . ,ĈI} is part of an equilibrium so-
lution, then {Ĉ1,Ĉ2, . . . ,ĈI} is Pareto efficient.

(2.59)

To see why this is true, suppose {Ĉ1,Ĉ2, . . . ,ĈI} is part of an equilibrium solution, but
there exists a feasible collection {C1,C2, . . . ,CI} of consumption processes as in (2.58),
with at least one inequality being strict. I will show this leads to a contradiction. Since
the model is complete, for each investor i there exists a trading strategy H i satisfying

H i
0B1 +

N

∑
n=1

H i
nSn(1) = Ci

1−Et (2.60)

In view of (2.56), this means that

0 =
I

∑
i=1

[
H i

0B1 +
N

∑
n=1

H i
nSn(1)

]
=

(
I

∑
i=1

H i
0

)
B1 +

N

∑
n=1

(
I

∑
i=1

H i
n

)
Sn(1)
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So defining a new trading strategy H̃ by

H̃n =
I

∑
i=1

H i
n, n = 0,1, . . . ,N

we see that the time t = 1 value of the portfolio corresponding to H̃ is identical to zero.
Since there are no arbitrage opportunities (recall that there must exist a risk neutral
probability measure), by the law of one price the time t = 0 value of this portfolio must
be zero, that is,

0 = H̃0B0 +
N

∑
n=1

H̃nSn(0) =

(
I

∑
i=1

H i
0

)
B0 +

N

∑
n=1

(
I

∑
i=1

H i
n

)
Sn(0) (2.61)

This equation will be used in a moment. Meanwhile, define the scalars

ψi ≡Ci
0− vi +H i

0B0 +
N

∑
n=1

H i
nSn(0), i = 1, . . . , I (2.62)

Think of Ci
0−ψi as time t = 0 consumption for investor i. The consumption process

{Ci
0−ψi,Ci

1} is attainable by (2.60) and (2.62). If ψi < 0, then investor i strictly prefers
the consumption process {Ci

0−ψi,Ci
1} to the consumption process {Ci

0,C
i
1}. Moreover,

{Ci
0−ψi,Ci

1} satisfies the budget constraints in investor i’s optimization problem (2.55),
and {Ci

0,C
i
1} is preferred to {Ĉi

0,Ĉ
i
1} by inequality (2.58). Hence ψ1 < 0 would imply

{Ci
0,C

i
1} is strictly preferred to {Ĉi

0,Ĉ
i
1}, thereby contradicting the fact that the latter is

an optimal solution of (2.55). It must be that ψi ≥ 0 for all i = 1, . . . , I.
By almost the same logic, if inequality (2.58) for investor i is strict, then ψi = 0

leads to a contradiction, and so this same ψi must be strictly positive. Since at least one
inequality in (2.58) is supposed to be strict, if we sum equation (2.62) across i, we see
that both sides of the resulting equation must be strictly positive. Using (2.61), we see
that the right hand side is simply

I

∑
i=1

Ci
0−

I

∑
i=1

vi > 0

But this contradicts the supposition that {C1,C2, . . . ,CI} satisfy the feasibility require-
ment (2.57); we conclude the collection {Ĉ1,Ĉ2, . . . ,ĈI}must be Pareto efficient.

In summary, if the market is complete, then a necessary condition for a collection
of consumption processes to be part of an equilibrium solution is that the collection be
Pareto efficient. Hence to compute an equilibrium solution, a reasonable approach might
be first to identify all the Pareto efficient collections of consumption processes and then
to search among these for one that is part of an equilibrium solution. Unfortunately, this
approach is easier said than done, in general, and so this idea will not be pursued any
further. Instead, we will study a variation of the equilibrium problem for which it is
easier to compute equilibrium solutions.
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Suppose we simplify the basic equilibrium problem by stipulating that Ci
0 = 0 and

Ei = 0 for every investor i = 1, . . . , I and ignoring the utility of time t = 0 consumption,
so that (2.55) for each investor is simply a standard optimal portfolio problem. Further-
more, condition (2.56) for an equilibrium solution is replaced by

I

∑
i=1

H i
n = sn, for n = 1, . . . ,N (2.63)

where sn > 0 represents the total supply or number of units or shares of security n that
are present in the market. The equilibrium problem can now be thought of as a market
where all the investors share common beliefs about the time t = 1 prices in each of the
states, and the question is, ‘What are the appropriate time t = 0 prices?’ Or perhaps
N companies are making initial public offerings of their securities, they can assess the
correct time t = 1 prices of their securities in each of the states, and they want to set
the time t = 0 offering prices properly. In any event, the equilibrium solution will now
consist of time t = 0 prices and a trading strategy for each investor such that the optimal
portfolio problem (2.55) is satisfied for each investor and the market clearing condition
(2.63) is satisfied.

To solve this kind of problem, a good approach is first to compute H i(S0)= {H i
1(S0), . . . ,H i

N(S0)},
the optimal solution of the portfolio problem (2.55) as a function of the specified time
t = 0 prices S0 = {S1(0), . . . ,SN(0)}. Thus S0 →H i

n(S0) should be thought of as investor
i’s demand ‘curve’ or demand function for security n. Knowing these demand functions
for all i and n, it remains to substitute them in (2.63) and solve for a time t = 0 price
vector S0 such that the market clearing condition (2.63) is satisfied.

We know something about the demand functions right away: they are finite at the
point S0 if and only if there exists a risk neutral probability measure at the point S0. This
is because if there is no risk neutral probability measure, then there is some arbitrage
opportunity, in which case the investors would find it desirable to buy long or sell short
an infinite quantity of one or more of the securities. It follows that the region where the
demand functions are all finite, which will be denoted S, is a subset of the n-dimensional
interval

N
X

n=1

[
min{S∗n(1)(ω) : ω ∈Ω},max{S∗n(1)(ω) : ω ∈Ω}]

If N = 1, then this interval coincides with S. With N ≥ 2, S can either coincide with the
n-dimensional interval or be a proper subset of its interior. Consideration of this interval
helps to organize the computation of the demand functions.

If the utility functions are suitably smooth with u′(·) taking all the nonnegative values
on the real line, then the demand functions S0 → H i(S0) are continuous on S. This is
because the first order necessary conditions (2.4) are satisfied for each investor i, namely,

0 = E
[
B1u′

(
vi +H i

1{S∗1(1)−S1(0)}+ · · ·+H i
n{S∗n(1)

−Sn(0)}){S∗n(1)−Sn(0)}], n = 1, . . . ,N
(2.64)
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(recall Sn(0) = S∗n(0)). These equations are satisfied by some H i for each S0 in S, and
with modest assumptions the solution H i(S0) will vary in a continuous fashion with re-
spect to S0 by what is called the implicit function theorem.2 Moreover, the absolute value
of one or more components of the demand functions will become arbitrarily large as S0

approaches the boundary of S. For example, in the case N = 1 the function H i
1(S0) be-

comes arbitrarily large (small) as S0 approaches the lower (respectively, upper) endpoint
of the interval S.

As stated above, to compute an equilibrium solution the recommended approach is
first to compute the demand functions and then to substitute them in the market clearing
condition (2.63) to solve for S0. But one should be warned that this recipe will usually
entail some nasty calculations; in fact, this approach is not guaranteed to be successful.
It is instructive to now look at an example.

Example 2.8. Suppose N = 2, K = 3, P = (1/3,1/3,1/3), r = constant, and there are I
identical investors with ui(w) = ln(w) and vi = v. The time t = 1 discounted prices are:

n S∗n(1)
ω1 ω2 ω3

1 6 8 4
2 13 9 8

Recalling the matrix A that was studied in chapter 1, it is apparent that if there is a risk
neutral probability measure, then this market must be complete. To compute the risk
neutral probability measure as a function of the still unknown time t = 0 prices, one
solves the usual system of equations and obtains

Q(ω) =





−28−S1(0)+4S2(0)
18

, ω = ω1

−4+5S1(0)−2S2(0)
18

, ω = ω2

50−4S1(0)−2S2(0)
18

, ω = ω3

The region where these three fractions are all strictly positive coincides with the region S
where the demand functions are finite; some simple algebra reveals this to be the interior
of the triangle with vertices at (4,8), (6,13), and (8,9). With log utility the optimal
attainable wealth is of the form W = vP(1 + r)/Q (see exercise 2.2), so solving the

2For the situation here, suppose the N partial derivatives of the right hand side of (2.64) with respect to each H i
n

as well as to each Sn(0) is a continuous function. Moreover, suppose the determinant of the N×N matrix of the
partial derivatives of the right hand side of (2.64) with respect to each H i

n, n = 1, . . . ,N (this is called a Jacobian), is
non-zero at some point Ŝ0 where (2.64) is satisfied. Then the implicit function theorem says there exist continuous
functions H i

1(S0), . . . ,H i
N(S0) such that, when substituted in (2.64), this equation is satisfied for all S0 in some

neighborhood of Ŝ0.
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system H0(1+ r)+H1S1(ω)+H2S2(ω) = W (ω), one obtains the demand functions

H i
1(S0) =

−(1/3)v
−28−S1(0)+4S2(0)

− (4/3)v
50−4S1(0)−2S2(0)

+
(5/3)v

−4+5S1(0)−2S2(0)

H i
2(S0) =

(4/3)v
−28−S1(0)+4S2(0)

− (2/3)v
50−4S1(0)−2S2(0)

− (2/3)v
−4+5S1(0)−2S2(0)

Hence knowing the values s1, s2, I, and v, one can substitute these two functions in the
two market clearing equations (2.63) and solve for the two unknown time t = 0 prices.
For example, if there are I = 2 investors each having v = $6000 to invest, and if there are
available s1 = 4000 and s2 = 2000 shares of securities 1 and 2, respectively, then system
(2.63) yields S1(0) = 5 and S2(0) = 9. Substituting these values back into the demand
functions gives H i

1 = 2000 and H i
2 = 1000, numbers which are as anticipated, since with

I identical investors the equilibrium trading strategies will necessarily satisfy H i
n = sn/I.

Note that H0 = v−H1S1(0)−H2S2(0) =−13,000, so each investor will borrow $13,000
in order to finance these transactions.

Exercise 2.13. Suppose N = 1, K = 2, r = constant, S1(ω1) = 6, S1(ω2) = 4, and
P(ω1) = 2/3. There are I identical investors, each with initial capital v and with log
utility preferences.

(a) Show that the risk neutral probability measure must be of the form Q(ω1) = [S0(1+
r)−4]/2 with S= (4/(1+ r),6/(1+ r)).

(b) Show that the demand function is

H(S0) =
v(1+ r){3S0(1+ r)−16}

3{4−S0(1+ r)}{6−S0(1+ r)}
and is strictly decreasing on S.

(c) Derive a formula for the equilibrium price S0 in terms of general parameters I, v, s1,
and r. What is the equilibrium price when I = 3, v = s1 = 1000, and r = 0?



Chapter 3

Multiperiod Securities Markets

3.1 Model Specifications, Filtrations, and Stochastic Processes

Multiperiod models of securities markets are much more realistic than single period
models. In fact, they are extensively used for practical purposes in the financial industry.

The following elements of the basic, multiperiod model are specified as data:

• T +1 trading dates: t = 0,1, . . . ,T .

• A finite sample space Ω with K < ∞ elements:

Ω = {ω1,ω2, . . . ,ωK}

• A probability measure P on Ω with P(ω) > 0 for all ω ∈Ω.

• A filtration F = {Ft ; t = 0,1, . . . ,T}, which is a submodel describing how the in-
formation about the security prices is revealed to the investors.

• A bank account process B = {Bt ; t = 0,1, . . . ,T}, where B is a stochastic process
with B0 = 1 and with Bt(ω) > 0 for all t and ω . Here Bt should be thought of as the
time t value of a savings account when $1 is deposited at time 0. Usually B is a non-
decreasing process, and the (possibly random) quantity rt ≡ (Bt −Bt1)/Bt−1 ≥ 0,
t = 1, . . . ,T , should be thought of as the interest rate pertaining to the time interval
(t−1, t).

• N risky security processes Sn = {Sn(t); t = 0,1, . . . ,T}, where Sn is a nonnegative
stochastic process for each n = 1,2, . . . ,N. Here Sn(t) should be thought of as the
time t price of risky security n, for example, the price of one share of common stock
of a particular corporation.

Note the multiperiod securities market model has two new features not shared with
single period models: the information submodel and stochastic process submodels of
prices. These will now be described.

69
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3.1.1 Information Structures

It is important to have a clear idea about how information concerning the security prices
is revealed to the investors. This is done in terms of subsets of the sample space Ω.

Consider that at time t = 0 every state ω ∈ Ω is possible. Some states may be more
likely than others, but none is ruled out. Meanwhile, at time t = T (it will always be
assumed) the investors learn the true state c of the world (and thus the true value of
every random variable). This is because as time evolves the investors will be able to
deduce the true state by observing the information as it unfolds, since it will be assumed
there exists a one-to-one correspondence between each possible sequence of information
and each state.

What about the information at intermediate times, namely, when 0 < t < T ? How
do we model the way the information evolves? Well, the new information observed
over one time period enables the investors to rule out certain states as being impossible.
Hence one can view the evolution of information as a random sequence {At} of subsets
of Ω, where A0 = Ω, AT = {ω} for some ω ∈ Ω and A0 ⊇ A1 ⊇ ·· · ⊇ AT−1 ⊇ AT . The
investors know at time t that for some subset At the true state is some ω ∈At , but they are
not sure which one it is. Some states ω ∈ At , may be more likely than others, but none
is ruled out. On the other hand, every state ω ∈ Ac

t (the complement of At) is ruled out
by the investors at time t. The investors know the true state of the world is not outside
At . Logically, one period later the relevant subset At+1 describing investor information
must be, in turn, a subset of At . Thus the sequence {At} of subsets that unfolds for the
investors must satisfy At+1 ⊆ At for all t.

Notice there exist K possible information sequences {At} of subsets. At time t = 0 the
investors are aware of all these sequences, but they do not know which one is going to
unfold. Arbitrarily select one such sequence {Ât} and some time s < T , and consider the
collection of all the sequences {At} which coincide with {Ât} up through time s along
with {Ât} itself. In particular, consider all the time s+1 subsets As+1 from the sequences
in this collection. If ω ∈ Âs, then there must exist at least one subset As+1 containing
ω (if none of the sequences coinciding with {At} through time s ends up in state ω ,
then ω should not have been in Âs to begin with). Hence the union of all the subsets
As+1 that can possibly follow Âs must be equal to Âs. Moreover, this collection As+1 of
subsets must be mutually exclusive (if ω , say, were contained in two distinct subsets,
then there would exist two or more distinct sequences {At} corresponding to state ω , a
contradiction). Hence the collection {As+1} of subsets that can possibly follow A forms
a partition of Âs, that is, a collection of disjoint subsets whose union equals Âs.

In particular, taking s = 0, we see that the collection {A1} of all possible time t = 1
subsets forms a partition of Ω. This partition is denoted P1 Moreover, the collection
{A2} of all possible time t = 2 subsets also forms a partition, denoted P2, of Ω; it has
the property that each A ∈P1 is equal to the union of one or more of the elements of
P2. It follows, therefore, that the information structure is fully described by a sequence
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P0,P1, . . . ,PT of partitions of Ω, with P0 ≡ {Ω}, PT ≡ {{ω1}, . . . ,{ωK}}, and
satisfying the property that each A∈Pt , is equal to the union of some elements in Pt+1

for every t < T . This sequence {Pt} of partitions is uniquely constructed from the
collection of possible information sequences {At}. Conversely, given a sequence {Pt}
of partitions as above, there is a unique, corresponding collection of possible information
sequences {At}.

There are several good ways to visualize the information structure. The sequence of
partitions can, of course, be described with a sequence of pictures of the sample space,
one picture for each point in time showing the corresponding partition. Alternatively,
the sequence of partitions can be described with a network diagram known as a tree,
where each node corresponds to one element At of the time t partition, and there is one
arc going from this node to each node corresponding to some At+1 ⊆ At . There will thus
be one path from the time t = 0 node (i.e., A0 = Ω) to each t = T node (i.e., AT = ω for
each state ω), and each such path will indicate a possible information sequence {At}.

Example 3.1. With K = 8 and T = 3, suppose the time t = 1 partition is

P1 = {{ω1,ω2,ω3,ω4}, {ω5,ω6,ω7,ω8}}
Then for the time t = 2 partition we could take

P2 = {{ω1,ω2}, {ω3,ω4}, {ω5,ω6}, {ω7,ω8}}
or

P2 = {{ω1}, {ω2,ω3,ω4}, {ω5,ω6,ω7,ω8}}
for example, but we could not take

P2 = {{ω1,ω2,ω3}, {ω3,ω4}, {ω5,ω6}, {ω7,ω8}}
for example, because two of the subsets are not disjoint, nor could we take

P2 = {{ω1,ω2}, {ω3,ω4,ω5}, {ω6,ω7,ω8}}
because no union of any of these subsets equals {ω5,ω6,ω7,ω8}. Adopting the first
suggestion for the time t = 2 partition, this example can be conveniently described by
the sequence of pictures shown in figure 3.1 or by the tree diagram in figure 3.2.

In summary, the submodel of information structure can be organized as a sequence
of partitions, with each successive partition becoming finer. Or it can be organized as a
tree. There is still another way to specify the submodel.

A collection F of subsets of Ω is called an algebra on Ω if

(a) Ω ∈F

(b) F ∈F =⇒ Fc = Ω\F ∈F

(c) F and G ∈F =⇒ F ∪G ∈F .
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Figure 3.1: Partitions corresponding to information submodel for example 3.1

Figure 3.2: Information tree submodel for example 3.1

Note that the empty set /0 = Ωc, so if F is an algebra, then it must contain the empty
set. Note also that F ∩G = (Fc∪Gc)c, so if F is an algebra containing F and G, then
F must contain the intersection F ∩G of F and G. Hence an algebra on Ω is a family
of subsets of Ω that is stable under finitely many set operations.

Given an algebra on Ω, denoted Ft , you can always find a unique collection {Fn} of
subsets Fn such that

(a) each Fn ∈Ft ,

(b) the subsets {Fn} are disjoint, and

(c) the union of the subsets {Fn} equals Ω.

In other words, corresponding to the algebra Ft is a partition of Ω, which is unique.
Conversely, given a partition you can perform a variety of elementary set operations
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(taking complements, intersections, unions, and so forth), generating as many new sub-
sets as possible. You thereby end up with an algebra, which is unique.

Hence there is a one-to-one correspondence between partitions of Ω and algebras on
Ω, and so the submodel of the information structure can be organized as a sequence
{Ft} of algebras. We write F = {Ft ; t = 0,1, . . . ,T} and call F a filtration. Note that
F0 = { /0,Ω} and FT consists of all the subsets of Ω. Since each subset in the time t
partition equals the union of some subsets in the time (t + 1) partition, we must have
Ft ⊆Ft+1, that is, each subset of Ft must be an element of Ft+1. One thus can say
that our filtration is a nested sequence of algebras.

Example 3.1 (continued) Corresponding to the time t = 1 partition is the algebra

F1 =
{

/0,Ω,{ω1,ω2,ω3,ω4},{ω5,ω6,ω7,ω8}
}

Corresponding to the time t = 2 partition we adopted is the algebra

F2 =
{

/0,Ω,{ω1,ω2},{ω3,ω4},{ω5,ω6},{ω7,ω8},{ω1,ω2,ω3,ω4},
{ω5,ω6,ω7,ω8},{ω1,ω2,ω5,ω6},{ω1,ω2,ω7,ω8},{ω3,ω4,ω5,ω6},
{ω3,ω4,ω7,ω8},{ω1,ω2,ω3,ω4,ω5,ω6},{ω1,ω2,ω3,ω4,ω7,ω8},
{ω1,ω2,ω5,ω6,ω7,ω8},{ω3,ω4,ω5,ω6,ω7,ω8}

}
.

3.1.2 Stochastic Process Models of Security Prices

A stochastic process Sn is a real-valued function Sn(t,ω) of both t and ω . Hence the
domain is {0,1, . . . ,T}×Ω. For each fixed ω ∈ Ω, the function t → Sn(t,ω) is called
the sample path. For each fixed t, the function ω → Sn(t,ω) is a random variable.

For modeling purposes, we want our stochastic process model of the security prices
to be consistent with the information structure. In particular, we want the information
available to the investors at any point in time to include knowledge of the present and
past security prices. This is accomplished by introducing the concept of measurability
of random variables.

The random variable X is said to be measurable with respect to the algebra F if
the function ω → X(ω) is constant on any subset in the partition corresponding to F .
Equivalently, for every real number x, the subset {ω ∈ Ω : X(ω) = x} is an element of
the algebra F .

Example 3.2. With F1 = { /0,Ω,{ω1,ω2,ω3,ω4},{ω5,ω6,ω7,ω8}} as in Example 3.1,
suppose

X(ω) =

{
6, ω = ω1,ω2,ω3, or ω4

8, ω = ω5,ω6,ω7, or ω8

and

Y (ω) =

{
1, ω = ω1,ω3,ω5, or ω7

0, ω = ω2,ω4,ω6, or ω8

dell
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Then X is measurable with respect to F1, but Y is not.

A stochastic process Sn = {Sn(t); t = 0,1, . . . ,T} is said to be adapted to the filtration
F = {Ft ; t = 0,1, . . . ,T} if the random variable Sn(t) is measurable with respect to Ft

for every t = 0, . . . ,T . It will be assumed in all that follows that the price of the nth risky
security is an adapted stochastic process Sn for n = 1, . . . ,N, and the same for the bank
account process B.

So how does the requirement that the stochastic processes be adapted ensure that each
investor has full knowledge of the past and present prices? The investors know at time
t that the true state ω is contained in a particular subset in the time t partition Pt . The
time t price Sn(t) of each security must be constant on this subset, so the investors can
work out what the time t values of the securities must actually be. Moreover, since the
partitions form a nested sequence, the investors can infer the observed subsets in earlier
partitions and thereby deduce the actual security prices at earlier times.

In summary, our securities market model will consist of security processes that are
adapted to the filtration, so the investors will have full knowledge of the past and present
prices. While the information and security submodels can be specified simultaneously,
in practice the filtration is often specified only after first specifying the stochastic process
submodel of the securities. But starting with a specification of the stochastic processes,
it is usually possible to specify two or more filtrations such that the security prices will
be adapted. Some of these filtrations may be unacceptable, however, because they may
be consistent with allowing the investors to look into the future. For example, if time
t + 1 prices are Ft measurable, then the investors know at time t what the prices will
be at time t +1. Nevertheless, there is always one filtration that corresponds to learning
about the prices as time goes on, but learning nothing more. The derivation of this kind
of filtration is illustrated in the following example.

Example 3.3. Consider an investor who watches a security and knows that it is going to
evolve as follows:

ωk t = 0 t = 1 t = 2
ω1 S0 = 5 S1 = 8 S2 = 9
ω2 S0 = 5 S1 = 8 S2 = 6
ω3 S0 = 5 S1 = 4 S2 = 6
ω4 S0 = 5 S1 = 4 S2 = 3

Here N = 1, and we are using the convention that when N = 1 the subscript can denote
the time index instead of the identification of the risky security. Moreover, T = 2 and
K = 4, so the stochastic process S has been specified for every (t,ω).

Now at time t = 0 all the investor observes is S0 = 5; in other words, the investor
does not have a clue about the true state, so F0 = { /0,Ω}. But at time t = 1 the investor
observes either S1 = 8 or S1 = 4. In the former case the investor infers the true state
must be either ω1 or ω2 in the latter case it must be either ω3 or ω4. Hence the relevant
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Figure 3.3: Information structure and risky security for example 3.3

partition is {ω1,ω2}∪{ω3,ω4}, and the corresponding algebra is

F1 =
{

/0,Ω,{ω1,ω2},{ω3,ω4}
}

At time t = 2 the investor observes S2 and thereby deduces the true state ω (the investor
distinguishes ω2 from ω3 by remembering S1). Hence the relevant partition is ω1∪ω2∪
ω3∪ω4 and F2 is the collection of all subsets of Ω. The resulting information structure
can be described as the tree in figure 3.3. Note that, indeed, the stochastic process S is
adapted to the filtration.

A filtration constructed in the manner illustrated in example 3.3 is said to be generated
by the stochastic process. The resulting filtration is the coarsest one possible, that is, the
various algebras have the fewest possible subsets such that the stochastic process under
discussion is adapted.

But there is another useful way to construct the securities market model. You can
start with a filtration submodel, based upon, perhaps, a variety of information reports.
Then you add stochastic process models of security prices, making sure the processes
are adapted to ensure appropriate investor knowledge of past and present prices. This is
illustrated in the following example.

Example 3.4. Suppose, with K = 4, N = 1, and T = 2, that at time t = 1 a marketing sur-
vey will be conducted that will be either favorable (corresponding to the subset {ω1,ω3})
or unfavorable {ω2,ω4}, respectively). Moreover, in either case the risky security will
possibly take one of two distinct values. Hence the relevant partition at time t = 1 is
ω1∪ω2∪ω3∪ω4 and the corresponding algebra F1 is the collection of all subsets of
Ω. Note that the risky process defined in example 3.3 is adapted to this filtration and
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thus consistent with the information submodel. But since the investors can distinguish
ω1 from ω2 as well as ω3 from ω4 at time t = 1 by observing the marketing report, they
learn more information than by only observing the price process. In fact, the investors
can now look into the future, for they know at time t = 1 what the prices will be at time
t = 2. The filtrations in examples 3.3 and 3.4 are different, although the price processes
are the same. This modeling flexibility is one reason why we go to the trouble of having
filtration submodels of the information structure.

3.1.3 Trading Strategies

A trading strategy H =(H0,H1, . . . ,HN) is a vector of stochastic processes Hn = {Hn(t); t =
1,2, . . . ,T}, n = 0,1, . . . ,N. Note that Hn(0) is not specified; this is because, for n ≥ 1,
Hn(t) should be interpreted as the number of units (e.g., shares of stock) that the in-
vestor owns (i.e., carries forward) from time t− 1 to time t, whereas H0(t)Bt−1 equals
the amount of money invested in the bank account at time t−1. Note also that Hn(t) can
be negative; this corresponds to borrowing money from the bank (in the case n = 0) or
selling short security n (in the cases n≥ 1).

It may seem odd to model an investor’s trading strategy as a stochastic process, but
upon recalling that a stochastic process is little more than a real- valued function of time
and the state, this begins to make sense. A trading strategy should be a rule (i.e., a
function) that specifies the investor’s position in each security at each point in time and
in each state of the world. Moreover, this rule should allow the investor to choose a
position in the securities based on all the available information, but it should not allow,
for example, the investor to ‘look into the future.’ Hence the trading strategies must be
related to the filtration submodel of the information structure in just the right way so that
the investor can base the trading position on the available information, but nothing more.
This is done by introducing the concept of predictability.

A stochastic process Hn is said to be predictable with respect to the filtration F if each
random variable Hn(t) is measurable with respect to Ft−1 for all t = 1,2, . . . ,T . Since
Ft−1 ⊆Ft , this means that all predictable stochastic processes are adapted.

It will be assumed in all that follows that each component of a trading strategy H
is a predictable stochastic process. Since the trading position Hn(t) established by the
investor at time t−1 is constant on the subset that is observed in the time t−1 partition
Pt−1, the investor can take into account all of the information available at that time, but
nothing more.

Example 3.1 (continued) Since Hn(1) ∈ F0, the position in security n carried for-
ward from time t = 0 to time t = 1 must be the same for all ω ∈ Ω. At time t = 1 the
trader can adjust this position based on the information which becomes available, that is,
on the observation as to whether the true state ω ∈ {ω1,ω2,ω3,ω4}. Consequently, the
investor can choose one value for Hn(2,ω) if ω ∈ {ω1,ω2,ω3,ω4} and a second value
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for Hn(2,ω) if ω 6∈ {ω1,ω2,ω3,ω4}. In other words, the investor’s new position at time
t = 1 can be according to any rule Hn(2) with Hn(2)∈F1. Finally, and in a similar fash-
ion, at time t = 2 the investor learns the information corresponding to F2; the investor
can take a new position according to any rule Hn(3) with Hn(3) ∈F2; and this rule will
have the property that Hn(3,ω1) = Hn(3,ω2), . . . and Hn(3,ω7) = Hn(3,ω8).

3.1.4 Value Processes and Gains Processes

The value process V = {Vt ; t = 0,1, . . . ,T} is a stochastic process defined by

Vt =





H0(1)B0 +
N

∑
n=1

Hn(1)Sn(0), t = 0

H0(t)Bt +
N

∑
n=1

Hn(t)Sn(t), t ≥ 1

Hence V0 is the initial value of the portfolio and, for t ≥ 1, Vt is the time-t value of the
portfolio before any transactions are made at that same time. Note that V is an adapted
stochastic process (if you know the subset in Pt , then you know H(t), Bt , and Sn(t), in
which case you know Vt).

Denote
∆Sn(t)≡ Sn(t)−Sn(t−1)

for the change in the value of the stochastic process Sn between times t−1 and t. Then
Hn(t)∆Sn(t) represents the one-period gain or loss due to the ownership of Hn(t) units
of security n between times t−1 and t. Similarly,

t

∑
u=1

Hn(u)∆Sn(u)

represents the cumulative gain or loss through time t due to the investment in security n.
This sum is an example of what is called a (discrete time) stochastic integral, being the
weighted sum of the values of one stochastic process (Hn), where the weights are given
by the one-period changes of another stochastic process. Finally,

Gt ≡
t

∑
u=1

H0(u)∆Bu +
N

∑
n=1

t

∑
u=1

Hn(u)∆Sn(u), t ≥ 1

defines the gains process and represents the cumulative gain or loss through time t of
the portfolio. Thus G is the stochastic integral of the trading strategy with respect to the
price process. Note that G = {Gt ; t = 1, . . . ,T} is an adapted stochastic process.

Example 3.3 (continued) Suppose Bt = (1 + r)t , where r ≥ 0 is a constant. Then
for the value process we have V0 = H0(1)+5H1(1),

V1 =

{
(1+ r)H0(1)+8H1(1), ω = ω1,ω2

(1+ r)H0(1)+4H1(1), ω = ω3,ω4
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and

V2 =





(1+ r)2H0(2)+9H1(2), ω = ω1

(1+ r)2H0(2)+6H1(2), ω = ω2,ω3

(1+ r)2H0(2)+3H1(2), ω = ω4

The gains process is given by

G1 =

{
rH0(1)+3H1(1), ω = ω1,ω2

rH0(1)−H1(1), ω = ω3,ω4

and

G2 =





rH0(1)+3H1(1)+ r(1+ r)H0(2)+H1(2), ω = ω1

rH0(1)+3H1(1)+ r(1+ r)H0(2)−2H1(2), ω = ω2

rH0(1)−H1(1)+ r(1+ r)H0(2)+2H1(2), ω = ω3

rH0(1)−H1(1)+ r(1+ r)H0(2)−H1(2), ω = ω4

3.2 Self-Financing Trading Strategies

As mentioned earlier, for t ≥ 1 the quantity Vt represents the time t value of the portfolio
just before any transactions (that is, any changes of ownership positions) take place at
that time. Meanwhile,

H0(t +1)Bt +
N

∑
n=1

HN(t +1)Sn(t), t ≥ 1

represents the time t value of the portfolio just after any time t transactions, that is,
just before the portfolio is carried forward to time t + 1. In general, these two portfolio
values can be different, which means that at time t some money is either added to or
withdrawn from the portfolio. However, for many applications money cannot be added
to or withdrawn from the portfolio at times other than t = 0 and t = T , and so this leads
to the concept of self-financing trading strategies.

A trading strategy H is said to be self-financing if

Vt = H0(t +1)Bt +
N

∑
n=1

HN(t +1)Sn(t), t = 1, . . . ,T −1. (3.1)

In other words, the time t values of the portfolio just before and just after any time
t transactions are equal. Intuitively, if no money is added to or withdrawn from the
portfolio between times t = 0 and t = T , then any change in the portfolio’s value must
be due to a gain or loss in the investments. Note this concept is not relevant to single
period models. Moreover, one can show by some simple bookkeeping calculations that:

A trading strategy H is self-financing if and only if

Vt = V0 +Gt , t = 1,2, . . . ,T
(3.2)
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Example 3.3 (continued) For the trading strategy H to be self-financing, one must
have at time t = 1

V1 = (1+ r)H0(1)+8H1(1) = (1+ r)H0(2)+8H1(2)

in states ω1 and ω2 and

V1 = (1+ r)H0(1)+4H1(1) = (1+ r)H0(2)+4H1(2)

in states ω3 and ω4. Equivalently, using Vt = V0 + Gt for t = 1 and t = 2 gives V=V2−
[G2−G1]. Computing this for ω1 yields

V1 = (1+ r)2H0(2)+9H1(2)− [r(1+ r)H0(2)+H1(2)]

= (1+ r)H0(2)+8H1(2)

which is the same as the self-financing equation (3.1). Similarly for ω2. For ω3 one
computes

V1 = (1+ r)2H0(2)+6H1(2)− [r(1+ r)H0(2)+2H1(2)]

= (1+ r)H0(2)+4H1(2)

which is also the same as earlier.

3.2.1 Discounted Prices

It is convenient to introduce discounted versions of some of the price processes that
have been introduced above. For much of the financial theory that will be developed,
what matters is the behavior of the security prices relative to each other, rather than their
absolute behavior. Hence we will be interested in normalized versions of the security
prices, obtained by dividing the prices of the various securities by the price of one of
them. For this purpose it is convenient to select the bank account as the divisor, that is,
as the numeraire.

The discounted price process S∗n = {S∗n(t); t = 0,1, . . . ,T} is defined by

S∗n(t)≡ Sn(t)/Bt , t = 0,1, . . . ,T ; n = 1,2, . . . ,N

The discounted value process V ∗ = {V ∗
t ; t = 0,1, . . . ,T} is defined by

V ∗
t ≡

{
H0(1)+∑N

n=1 Hn(1)S∗n(0), t = 0

H0(t)+∑N
n=1 Hn(t)S∗n(t), t = 1, . . . ,T

Finally, the discounted gains process G∗ = {G∗
t ; t = 1,2, . . . ,T} is defined by

G∗
t ≡

N

∑
n=1

t

∑
u=1

Hn(u)∆S∗n(u), t = 1, . . . ,T
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where the notation ∆S∗n(u) means S∗n(u)−S∗n(u−1), as should be guessed from the ear-
lier definition of the (undiscounted) gains process. All of these are adapted, stochastic
processes.

By carrying out some bookkeeping calculations it is straightforward to verify that

V ∗
t = Vt/Bt , t = 0,1, . . . ,T (3.3)

and that
A trading strategy H is self-financing if and only if

V ∗
t = V ∗

0 +G∗
t , for t = 1,2, . . . ,T

(3.4)

Exercise 3.1. Verify (3.2).

Exercise 3.2. Verify (3.3).

Exercise 3.3. Verify (3.4).

3.3 Return and Dividend Processes

Given a price process Sn, n = 1, . . . ,N, suppose one defines a new process Rn = {Rn(t); t =
0,1, . . . ,T} by setting Rn(0) = 0 and, for all t = 1, . . . ,T ,

∆Rn(t)≡
{

∆Sn(t)/Sn(t−1), Sn(t−1) > 0

0, Sn(t−1) = 0
(3.5)

This process Rn is called the return process corresponding to the price process Sn. The
return process R0 is defined in terms of the bank account process B in a similar manner,
giving ∆R0(t) = rt . These and other kinds of return processes are often useful for making
various kinds of calculations.

Note that ∆Rn(t)≥−1, because the prices are non-negative. Moreover, ∆Rn(t) >−1
for all t if and only if the price process Sn is strictly positive.

The equation defining Rn is the same as

∆Sn(t) = Sn(t−1)∆Rn(t), t = 1, . . . ,T (3.6)

which, in turn, is the same as

Sn(t) = Sn(0)+
t

∑
u=1

Sn(u−1)∆Rn(u), t = 1, . . . ,T (3.7)

Still another equivalent equation is

Sn(t) = Sn(0)
t

∏
u=1

(
1+∆Rn(u)

)
, t = 1, . . . ,T (3.8)
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These last two equations show that starting with a return process Rn satisfying ∆Rn >

−1 together with an initial price Sn(0), one can define a strictly positive price process.
Hence there is a one-to-one correspondence between positive price processes and pairs
consisting of a positive initial price together with a return process having jumps bigger
than minus one. This is a useful fact, because it is often easier to set up a securities
market model by first specifying the return processes rather than by directly specifying
the price processes.

3.3.1 Returns for Discounted Price Processes

The return processes corresponding to value processes, discounted price processes, and
so forth can be defined in exactly the same way. Since S∗n(t) = Sn(t)/Bt for t = 1, . . . ,T ,
one may wonder how R∗n, which denotes the return process corresponding to S∗n, relates
to Rn, the return process corresponding to the undiscounted price process. To find out,
we can compute

∆S∗n(t) = S∗n(t)−S∗n(t−1) = Sn(t)/Bt −S∗n(t−1)

=
Sn(t−1)[1+∆Rn(t)]

Bt−1[1+∆R0(t)]
−S∗n(t−1)

= S∗n(t−1)
[

∆Rn(t)−∆R0(t)
1+∆R0(t)

]

Since ∆S∗n(t) = S∗n(t−1)∆R∗n(t) by definition, this implies

∆R∗n(t) =
∆Rn(t)−∆R0(t)

1+∆R0(t)
This is consistent with

S∗n(t) = S∗n(0)
t

∏
u=1

(
1+∆R∗n(u)

)

= Sn(0)
t

∏
u=1

[
1+∆Rn(u)
1+∆R0(u)

]
= Sn(t)/Bt

3.3.2 Returns for the Value and Gains Processes

Since Hn(t)∆Sn(t) = Hn(t)Sn(t−1)∆Rn(t), it follows that the gains process satisfies

Gt =
t

∑
u=1

H0(u)Bu−1∆R0(u)+
N

∑
n=1

t

∑
u=1

Hn(u)Sn(u−1)∆Rn(u)

=
t

∑
u=1

M0(u)∆R0(u)+
N

∑
n=1

t

∑
u=1

Mn(u)∆Rn(u)

where the quantity

Mn(t)≡
{

H0(t)Bt−1, n = 0

Hn(t)Sn(t−1), n = 1,2, . . . ,N
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can be interpreted as the money invested in security n beginning at time t−1. In other
words, M ≡ {M0,M1, . . . ,MN} is an alternative way to specify the trading strategy, and
the preceding expression for G says that the gains process is equal to the stochastic
integral of the trading strategy M with respect to the return process of the securities.
Note that Mn = {Mn(t); t = 1,2, . . . ,T} is a predictable stochastic process.

Next, consider the return process, denoted R, corresponding to the value process V .
Since

Vt = Vt−1 +H0(t)∆Bt +
N

∑
n=1

Hn(t)∆Sn(t)

= Vt−1 +M0(t)∆R0(t)+
N

∑
n=1

Mn(t)∆Rn(t)

it follows that

∆R(t) = [Vt −Vt−1]/Vt−1

=
M0(t)
Vt−1

∆R0(t)+
N

∑
n=1

[
Mn(t)
Vt−1

]
∆Rn(t)

=
N

∑
n=1

Fn(t)∆Rn(t)

where
Fn(t)≡Mn(t)/Vt−1, n = 0,1, . . . ,N

represents the fraction of the investor’s wealth invested in security n at time t− 1 and
about to be carried forward to time t. The equation for R expresses the return process
for the value process in terms of the return processes for the individual securities. Note
that Fn = {Fn(t); t = 1,2, . . . ,T} is a predictable stochastic process. The quantity Fn(t)
can be negative for some n, t, and ω , but one always has F0(t) = 1−F1(t)−·· ·−FN(t).
Hence F ≡ {F1, . . . ,FN} is still another form of the trading strategy.

In summary, the trading strategy can be expressed in three ways: as the number of
units, Hn, invested in security n; as the amount of money, Mn, invested in security n; or
as the fraction of wealth, Fn, invested in security n. In the latter case, if you also know
the return process for each security, then you have a convenient, alternative expression
for the value process, namely,

Vt = V0

t

∏
u=1

[1+∆R(u)] = V0

t

∏
u=1

[
1+

N

∑
n=1

Fn(u)∆Rn(u)

]

So, starting with a trading strategy in the fractional form F = {F1, . . . ,FN} together with
the individual return processes {Rn} and the initial value V0. one can compute Vt as
well as the trading strategy in the monetary form M = {M0,M1, . . . ,MN}. Knowing, in
addition, the initial prices B0 and Sn(0), one can compute the price processes as well as,
finally, the trading strategy in unit form H = {H0,H1, . . . ,HN}.
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With R∗ = {R∗(t); t = 0,1, . . . ,T} denoting the return process corresponding to the
discounted value process V ∗, it follows from the above results that

∆R∗(t) =
∆R(t)−∆R0(t)

1+∆R0(t)
(3.9)

Hence

V ∗
t = V ∗

0

t

∏
u=1

[1+∆R∗(u)] = V0

t

∏
u=1

[
1+∆R(u)
1+∆R0(u)

]

which is consistent with the fact that V ∗ = V/B.

3.3.3 Dividend Processes

Various kinds of securities, such as dividend-paying stocks, issue cash payments to the
owners on a periodic basis. Up to this point, this feature has been ignored. It is of no
interest for the single period model, because Sn(1) represents the time t = 1 value of one
unit of the security for the investor who made the purchase at time t = 0, and how this is
divided up between a cash dividend and the time t = 1 value of a stock certificate, say, is
of no consequence. For multiperiod models, however, it is often important to explicitly
model any dividend payments. For example, the investor holding a stock over several
periods may receive a cash dividend, and it is necessary to carefully model whether the
investor reinvests the cash in the same stock, deposits the cash in the bank account, or
uses the cash in another way.

There are two ways to incorporate dividend payments: implicitly and explicitly. With
the implicit approach, Sn(t) should be interpreted as the value of the investment where
one unit of the security is purchased at time t = 0 and held indefinitely, and any dividends
received are reinvested in the same security. For example, if a $1 dividend is received
at time t = 1, then the ex-dividend price at that time is Sn(1)− 1, which means the $1
dividend was used to purchase (Sn(1)− 1)−1 additional units of the security. But as
time evolves further the bookkeeping becomes rather messy, as one tries to keep track
of the true security price, the true position in the security, and so forth. Nevertheless,
this implicit approach is sometimes convenient for addressing issues where the return
process is what matters, because two securities having the same return process are (at
least for some purposes) equivalent, even though one pays dividends and the other does
not. In other words, the implicit approach is really one where you can work exclusively
with return processes rather than a price process; in effect, each dividend-paying security
is replaced by a security that does not pay any dividends but has exactly the same return
process.

To see what the return process is for a dividend-paying security, and to describe the
explicit approach, we call Dn = {Dn(t) : t = 0, . . . ,T} the dividend process for security
n, n = 1, . . . ,N, where Dn(0) = 0 and ∆Dn(t) represents the dividend per security unit
paid at time t. Thus Dn(t) represents the cumulative dividend payments associated with
one unit of the security. Moreover, Sn(t) represents the ex-dividend price of the security,
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that is, the price after any time t dividend payment. It will always be assumed that the
dividend process is an adapted process. For securities paying dividends, the dividend
processes should be specified as part of the data.

Now an investor owning one unit of security n at time t − 1 will earn a profit of
∆Sn(t)+∆Dn(t) over the ensuing period, so the corresponding one-period return is (as-
suming Sn(t−1) > 0)

∆Rn(t) =
∆Sn(t)+∆Dn(t)

Sn(t−1)
, t = 1, . . . ,T ; n = 1, . . . ,N

Thus knowing the price and dividend processes for a security, one can deduce the se-
curity’s return process (of course, Rn(0) = 0), but not conversely. For a given return
process, it is clear that there can exist an infinite number of price-dividend process pairs
all having this same return process, with one of these pairs satisfying Dn = 0.

The discounted return process R∗n for a dividend-paying security is defined by taking
R∗n(0) = 0 and

∆R∗n(t) =
∆S∗n(t)+∆Dn(t)/Bt

S∗n(t−1)
, t = 1, . . . ,T ; n = 1, . . . ,N

It is not difficult to verify that the earlier expression ∆R∗n(t) = [∆Rn(t)−∆R0(t)]/[1 +
∆R0(t)], derived for the case of no dividends, still holds.

In all that follows, a dividend-paying security will have its dividends modeled in this
explicit fashion. Thus if no dividend process is specified, then it should be assumed the
security does not pay any dividends.

Exercise 3.4. Show that in example 3.3 one has R1(1,ω1)= R1(1,ω2)= 0.6, R1(1,ω3)=
R1(1,ω4) =−0.2, R1(2,ω1) = 0.725, R1(2,ω2) = 0.35, R1(2,ω3) = 0.3 and R1(2,ω4) =
−0.45. What is the return process R∗n corresponding to S∗1 in the case where the interest
rate is the constant r > 0?

Exercise 3.5. Show that (3.5), (3.6), (3.7), and (3.8) are all equivalent when Sn is strictly
positive. What if Sn can be zero?

Exercise 3.6. Verify relationship (3.9) in two different ways.

3.4 Conditional Expectation and Martingales

Just as with single period models, the multiperiod securities market model will have
no arbitrage opportunities if and only if there exists a risk neutral probability measure.
However, in the multiperiod situation the risk neutral probability measures are defined
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in terms of things called martingales, and these, in turn, are defined with conditional ex-
pectations. The purpose of this section will therefore be to introduce these two concepts
from the world of probability theory.

In elementary probability theory, where, as we are assuming, the sample space Ω is
finite, the conditional expectation of the discrete random variable Y given the event A is
denoted E[Y |A] and defined in terms of the conditional probability distribution P{Y =
y|A} by

E[Y |A] = ∑
y

yP{Y = y|A}

Since P{Y = y|A}= P{Y = y,A}/P{A} by Bayes’s Law, it follows that

E[Y |A] = ∑
y

yP{Y (ω) = y,A}/P{A}= ∑
ω∈A

Y (ω)P{ω}/P{A}

Hence in example 3.3, for instance, where P{ω}= 1/4, for all ω ∈Ω, one has P{S2 =
9|S1 = 8} = P{S2 = 6|S1 = 8} = (1/4)/(1/4 + 1/4) = 1/2, in which case E[S2|S1 =
8] = 7.5. Similarly, E[S2|S1 = 4] = 4.5.

When working with stochastic processes defined on a filtered probability space, it is
often convenient to use E[Y |F ] as a summary of all the conditional expectations of the
form E[Y |A] as the event A runs through the algebra F . The idea is that E[Y |F ] is
defined by

E[Y |F ]1A = E[Y |A], all A ∈P

where P is the partition of Ω that corresponds to F . Thus E[Y |F ] will be a random
variable that is measurable with respect to F . In the case of example 3.3, for instance,

E[S2|F1] =

{
7.5, ω1 and ω2

4.5, ω3 and ω4

Since E[Y |F ] is a perfectly good random variable, we can compute its expectation:

E
[
E[Y |F ]

]
= E

[
∑

A∈P

E[Y |A]1A

]
= ∑

A∈P

P{A}E[Y |A]

= ∑
A∈P

P{A} ∑
ω∈A

Y (ω)P{ω}/P{A}

= ∑
A∈P

∑
ω∈A

Y (ω)P{ω}= EY

A slight generalization of this is the following.

If F1 ⊂F2, then E
[
E[Y |F2]|F1

]
= E[Y |F1] (3.10)

In example 3.3, for instance, E
[
E[S2|F1]

]
= 7.5/2+4.5/2 = 6 = ES2.

If the random variable X ∈F , then one can write

X = ∑
A∈P

xA1A, (3.11)
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where xA is a scalar and P is the partition corresponding to F . Hence

E[XY |F ] = ∑
A∈P

E[XY |A]1A = ∑
A∈P

E[xAY |A]1A

= ∑
A∈P

xAE[Y |A]1A = XE[Y |F ]

In a similar fashion one can verify the following generalization.

Given random variables X1, X2, Y1, and Y2 with X1,X2 ∈F , one has

E[X1Y1 +X2Y2|F ] = X1E[Y1F ]+X2E[Y2F ].
(3.12)

If Y is a constant, then clearly E[Y |F ] = Y . Taking Y = 1 and using (3.12), it follows
that

If X ∈F then E[X |F ] = X (3.13)

In the case of example 3.3, for instance, E[S1S2|F1] = S1E[S2|F1] and E[S1|F1] = S1.
Taking A ∈ F implies 1A ∈ F , so E[Y 1A|F1] = 1AE[Y |F ] by (3.12). Hence by

(3.10) one has
E

[
1AE[Y |F ]

]
= E[Y 1A], all A ∈F

It turns out this equation provides an alternative definition of E[Y |F ], one that general-
izes to probability spaces where Ω is not finite. In particular, suppose X ∈F satisfies

E[1AX ] = E[Y 1A], all A ∈F (3.14)

Taking X as in (3.11), it follows that E[1AX ] = xAP{A} when A ∈ P , the partition
corresponding to F . Meanwhile, taking the same A ∈P one has

E[Y 1A] = ∑
ω∈A

Y (ω)P{ω}= P{A} ∑
ω∈A

Y (ω)P{ω}/P{A}= P{A}E[Y |A]

Hence (3.14) implies
xA = E[Y |A], all A ∈P

which means X = E[Y |F ]. This characterization of E[Y |F ] is summarized in the fol-
lowing.

Given an arbitrary random variable Y , the conditional expectation E[Y |F ]
is the unique random variable such that

(a) E[Y |F ] ∈F

(b) E[E[Y |F ]1A] = E[Y 1A], all A ∈F

(3.15)

We now turn to the topic of martingales. We are given a filtered probability space
together with an adapted stochastic process Z = {Zt ; t = 0,1, . . . ,T}. The process Z is
said to be a martingale if

E[Zt+s|Ft ] = Zt , all s, t ≥ 0
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Example 3.5. Consider a coin with P(heads)≡ p. where 0 < p < 1. Let
Nt ≡ number of heads after t independent coin flips,
Zt ≡ Nt− pt, and Ft ≡ algebra corresponding to the observations of the first t coin flips.
It is easy to see that E[Nt ] = pt. Moreover, Z is a martingale, because

E[Zt+s|Ft ] = E[Nt+s− p(t + s)|Ft ]

= E[Nt+s−Nt +Nt |Ft ]− p(t + s)

= E[Nt+s−Nt |Ft ]+E[Nt |Ft ]− pt− ps

= E[Ns]+Nt − pt− ps

= Nt − pt = Zt

Here we used the self-evident fact that coin flips t + 1, t + 2, . . . , t + s are independent
of the first t flips, in which case the expected number of heads observed during flips
t + 1, t + 2, . . . , t + s, conditioned on the observations of the first t flips, is equal to the
expected number of heads observed during s flips.

Martingales are often used as models of fair gambling games. where Zt represents the
gambler’s stake after t plays of the game.

I conclude by mentioning two kinds of processes that are closely related to martin-
gales. An adapted stochastic process Z = {Zt ; t = 0,1, . . . ,T} is said to be a supermartin-
gale if

E[Zt+s|Ft ]≤ Zt , all s, t ≥ 0

Thus a supermartingale resembles a martingale. except that the conditional expectation
of the future value can be less than as well as equal to the current value. All martingales
are supermartingales, but not vice versa.

Finally, an adapted stochastic process Z = {Zt ; t = 0,1, . . . ,T} is said to be a sub-
martingale if

E[Zt+s|Ft ]≥ Zt , all s, t ≥ 0

Thus Z is a submartingale if and only if−Z is a supermartingale. Also, Z is a martingale
if and only if it is both a submartingale and a supermartingale.

Exercise 3.7. Verify (3.10).

Exercise 3.8. Verify (3.12).

Exercise 3.9. With X = {Xt : t = 0,1, . . . ,T} an adapted stochastic process, show that
the following are equivalent:

(a) X is a martingale.

(b) Xt = E[XT |Ft ], t = 0,1, . . . ,T −1.

(c) E[∆Xt+1|Ft ] = 0, t = 0,1, . . . ,T −1.
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3.5 Economic Considerations

I now return to our securities market model and develop a relationship that is analogous
to the one for single period models: there are no arbitrage opportunities if and only
if there exists a risk neutral probability measure. This and most other economic con-
cepts developed for single period models hold in a rather similar fashion for multiperiod
models; really only the details are different.

An arbitrage opportunity in the case of a multiperiod securities market is some trad-
ing strategy H such that

(a) V0 = 0,

(b) VT ≥ 0,

(c) EVT > 0, and

(d) H is self-financing

As with single period models, the existence of an arbitrage opportunity is not consistent
with economic equilibrium. The presence of a possibility of turning zero dollars into a
positive amount of dollars without any risk of losing money would beckon market forces
that would disrupt the underlying structure of security prices.

In view of (3.3), it is immediate that

The self-financing trading strategy H is an arbitrage opportunity if and only
if

(a) V ∗
0 = 0

(b) V ∗
T ≥ 0, and

(c) EV ∗
T > 0.

(3.16)

And thanks to (3.4), we also have that

The self-financing trading strategy H is an arbitrage opportunity if and only
if

(a) G∗
T ≥ 0, and

(b) EG∗
T > 0.

(3.17)

Example 3.3 (continued) If Bt = 1 for t = 0,1, and 2, then there are no arbitrage
opportunities. If the investor has any position at all in the risky asset at time t = 1,
then there is always the possibility that the price will move in a losing direction. If any
position is taken in the risky asset at time t = 0, then there is the possibility of ‘being in
the red’ at time t = 1 with no guaranteed way of recovering in the next period.

On the other hand, suppose Bt = (1+ r)t with the scalar r ≥ 12.5 per cent. Consider
the trading strategy where you start with zero dollars and do nothing at time t = 0 or
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at time t = 1 if S1 = 4, but if S1 = 8 then at time t = 1 you sell short one share of
the risky asset (i.e., H1(2) = −1) and invest the $8 proceeds in the bank account (i.e.,
H0(2) = 8/(1+ r)). Then at time t = 2 the value of the portfolio is

V2 =

{
(1+ r)2H0(2)+9H1(2) = 8(1+ r)−9≥ 0, ω = ω1

(1+ r)2H0(2)+6H1(2) = 8(1+ r)−6≥ 0, ω = ω2

Hence this trading strategy is an arbitrage opportunity.

It turns out that, as with single period models, there are no arbitrage opportunities if
and only if there exists a risk neutral probability measure. But while risk neutral prob-
abilities are defined in terms of ordinary expectations for single period models, they are
defined in terms of martingales for multiperiod models.

A risk neutral probability measure (also called a martingale measure) is a probability
measure Q such that

1. Q(ω) > 0 for all ω ∈Ω, and

2. The discounted price process S∗n is a martingale under Q for every n = 1,2, . . . ,N.

In other words, in view of the definition of martingales, a risk neutral probability mea-
sure Q must satisfy

EQ[S∗n(t + s)|Ft ] = S∗n(t), t,s≥ 0

that is,
EQ[BtSn(t + s)/Bt+s|Ft ] = Sn(t), t,s≥ 0 (3.18)

Example 3.3 (continued) Suppose Bt = (1+ r)t where r ≥ 0 is a constant. We want to
compute a martingale measure, if there is one. To do this, we can use (3.18) for different
values of s and t, giving the following equations:

t = 0, s = 1 : 5(1+ r) = 8[Q(ω1)+Q(ω2)]+4[Q(ω3)+Q(ω4)]

t = 0, s = 2 : 5(1+ r)2 = 9Q(ω1)+6Q(ω2)+6Q(ω3)+3Q(ω4)

t = 1, s = 1 : 8(1+ r) = [9Q(ω1)+6Q(ω2)]/[Q(ω1)+Q(ω2)]

t = 1, s = 1 : 4(1+ r) = [6Q(ω3)+3Q(ω4)]/[Q(ω3)+Q(ω4)]

Taking any three of these equations together with the equation Q(ω1)+ · · ·+Q(ω4) = 1
allows one to solve for the four unknowns:

Q(ω1) =
(

1+5r
4

)(
2+8r

3

)
Q(ω2) =

(
1+5r

4

)(
1−8r

3

)

Q(ω3) =
(

3−5r
4

)(
1+4r

3

)
Q(ω4) =

(
3−5r

4

)(
2−4r

3

)

Note these are all strictly positive, and thus we have a valid probability measure, if
0≤ r < 1/8. On the other hand, if r ≥ 1/8 then Q(ω2) is not strictly positive, in which
case there is no martingale measure.
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If r < 1/8, then you cannot find any situation (that is, any time and state) where
the discounted price next period can be strictly higher than the current discounted price
unless there is a chance the discounted price next period is strictly lower. Nor can you
find any situation where the discounted price next period can be strictly lower than the
current discounted price unless there is a chance the discounted price next period is
strictly higher. Hence in every situation there is a risk that a non-zero position in the risky
security will lose money over the next period, and so there are no arbitrage opportunities.

On the other hand, if r ≥ 1/8, then if S1 = 8 at time t = 1 (which means the state
is ω or ω2), then S∗2(ω1) ≤ S∗1(ω1) and S∗2(ω2) < S∗1(ω2). Here is a situation where the
discounted price next period can be strictly lower than the present price without there
being any risk that the discounted price next period can be strictly higher. Of course,
now there is an arbitrage opportunity, as was described earlier.

We now come to the principal result of this section.

There are no arbitrage opportunities if and only if there exists a martingale
measure Q.

(3.19)

A proof of this is similar to our proof of the analogous result for single period models.
In order to explain one direction, namely why the existence of a martingale measure
implies there are no arbitrage opportunities, we will first provide a useful result that is
in general terms:

If Z is a martingale and H is a predictable process, then

Gt ≡
t

∑
u=1

Hu∆Zu

is also a martingale.

(3.20)

This follows from some straightforward calculations using some properties of condi-
tional expectations. Let s, t ≥ 0 be arbitrary. Then

E[Gt+s|Ft ] = E[Gt+s−Gt +Gt |Ft ]

= E[Ht+1∆Zt+1 + · · ·+Ht+s∆Zt+s|Ft ]+Gt

= E
[
E[Ht+1∆Zt+1|Ft ]

∣∣Ft
]

+E
[
E[Ht+2∆Zt+2|Ft+1]

∣∣Ft
]
+ · · ·

+E
[
E[Ht+s∆Zt+s|Ft+s−1]

∣∣Ft
]
+Gt

= E[Ht+1 ·0|Ft ]+ · · ·+E[Ht+s ·0|Ft ]+Gt

= Gt

where the next to last equality follows from the fact that Z is a martingale. Hence G is a
martingale too.
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It follows directly from (3.4) and (3.20) that we have the following result, which is of
considerable practical importance:

If Q is a martingale measure and H is a self-financing trading strategy, then
V ∗, the discounted value process corresponding to H, is a martingale under
Q.

(3.21)

We can use (3.21) to quickly show that the existence of a martingale measure Q
implies there cannot be any arbitrage opportunities. Suppose H is an arbitrary self-
financing trading strategy with V ∗

T ≥ 0 and EV ∗
T > 0. This implies EQV ∗

T > 0. Since
by (3.21) V ∗ is a martingale under Q, it follows that V ∗

0 = EQV ∗
T > 0. Hence by (3.16)

H cannot be an arbitrage opportunity, nor can any other trading strategies be arbitrage
opportunities, by the arbitrary choice of H.

One can show the converse of (3.19) in several ways, such as by using an extension of
the separating hyperplane theorem argument that was used for the case of single period
models. However, it is much easier to build on what we already know for single period
models, namely, the single-period result analogous to (3.19). In particular, knowing
there are no arbitrage opportunities for the multiperiod model, one can construct one-
period conditional probabilities that are compatible with risk neutrality. The martingale
measure Q can then be computed from these conditional probabilities by multiplying
them together in accordance with the information structure of the multiperiod model. In
other words, the martingale measure for the multiperiod model is constructed by ‘pasting
together’ various single period models.

To be more precise, there is one underlying single period model corresponding to
each non-terminal node of the tree structure of the information submodel, that is, to
each A ∈ Pt (the minimal partition corresponding to Ft) for each t < T . The single
period ‘time 0’ discounted price of risky security n is S∗n(t,ω), ω ∈ A, which is constant
on A. The corresponding single period ‘sample space’ consists of one state for each cell
A′ ⊆ A that is a member of the partition Pt+1 (that is, one state for each branch coming
out of the node in the tree structure of the information submodel). Finally, the ‘time 1’
discounted prices for this single period model are given by the values of S∗n(t +1,ω) for
ω ∈ A.

If any underlying single period model has an arbitrage opportunity in the single period
sense, then the multiperiod model must have an arbitrage opportunity in the multiperiod
sense. To see this, suppose there exists an arbitrage opportunity Ĥ for the single period
model corresponding to some A ∈ Pt for t < T . This means that the discounted gain
Ĥ1∆S∗1(t +1)+ · · ·+ ĤN∆S∗N(t +1) is non-negative and not identical to zero on the event
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A. Now construct a multiperiod trading strategy H by taking

Hn(s,ω) =





Ĥn, s = t +1, ω ∈ A, n = 1, . . . ,N

−Ĥ1S∗1(t)−·· ·− ĤNS∗N(t), s = t +1, ω ∈ A, n = 0

Ĥ1∆S∗1(t +1)+ · · ·+ ĤN∆S∗N(t +1), s > t +1, ω ∈ A, n = 0

0, otherwise

Thus, as can be verified with a little work, H is the self-financing trading strategy which
starts with zero money and does nothing unless the event A occurs at time t, in which
case at time t the position Ĥn is taken in the nth risky security, while the position in the
bank account is chosen in a self-financing manner. Subsequently, no position is taken in
any of the risky securities; any non-zero value of the portfolio is reflected by a position
in the bank account. If Ĥ is an arbitrage opportunity for the single period model, then
this subsequent position in the bank account will, in fact, be non-negative for all ω ∈Ω
and strictly positive for at least one ω ∈ A. In particular, under H one will have V ∗

0 = 0,
V ∗

T ≥ 0, and V ∗
T (ω) > 0 for at least one ω ∈Ω, that is, H will be an arbitrage opportunity.

In other words, we see that

If the multiperiod model does not have any arbitrage opportunities, then
none of the underlying single period models has any arbitrage opportunities
in the single period sense.

(3.22)

Consequently, in view of what we know for single period models, corresponding to
each underlying single period model is a risk neutral probability measure. For example,
corresponding to each A∈Pt for t < T is a probability measure, denoted Q(t,A), on the
single period sample space. This probability measure gives positive mass to each cell
A′⊆A in the partition Pt+1, it sums to one over such cells, and it satisfies EQ(t,A)∆S∗n(t +
1) = 0 for n = 1, . . . ,N.

Notice that Q(t,A) gives rise to a probability for each branch in the information
tree that emerges from the node corresponding to (t,A). These probabilities should
be thought of as conditional risk neutral probabilities, given the event A at time t. Hence
starting with a collection of risk neutral probability measures Q(t,A) for all A ∈Ft and
t < T , one can construct a probability measure Q for the whole multiperiod model by
proceeding in an obvious manner: Q(ω) is set equal to the product of the conditional
probabilities along the path from the node at t = 0 to the node corresponding to (T,ω).
Clearly ∑ω∈Ω Q(ω) = 1. Moreover, Q(ω) > 0 for every ω ∈ Ω, because all the condi-
tional risk neutral probabilities are strictly positive.

It remains to explain why the probability measure Q that has been constructed is
actually a martingale measure. Since EQ(t,A)∆S∗n(t +1) = 0 for n = 1, . . . ,N, A ∈Pt and
t < T , it follows that

EQ[∆S∗n(t +1)|Ft ] = 0 for n = 1, . . . ,N and t < T (3.23)
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Now take arbitrary s, t ≥ 0 and n:

EQ[S∗n(t + s)|Ft ] = EQ[∆S∗n(t + s)+ · · ·+∆S∗n(t +1)+S∗n(t)|Ft ]

= EQ
[
EQ[∆S∗n(t + s)|Ft+s−1]

∣∣Ft
]
+ · · ·

+EQ
[
EQ[∆S∗n(t +1)|Ft ]

∣∣Ft
]
+S∗n(t)

= EQ[0|Ft ]+ · · ·+EQ[0|Ft ]+S∗n(t)
= S∗n(t)

where the next to last equality follows from (3.23) (note this calculation demonstrates
that, in general, an expression like (3.23) is equivalent to that used in the definition of
a martingale). Hence S∗n is a martingale under Q, and so Q is a risk neutral probability
measure.

The preceding explanation of the fundamental principle (3.19) may be a bit abstract,
but it becomes transparent if you look at the picture of an information tree for a simple
multiperiod model.

Example 3.3 (continued) Suppose Bt = (1+ r)t with r a constant, as before. Looking
at the node corresponding to t = 0 (which has two branches emerging, corresponding to
{ω1,ω2} and {ω3,ω4}, respectively), one sees that the conditional probability measure
Q(0,Ω) can be obtained by solving 5 = p8/(1+ r)+(1− p)4/(1+ r). Thus p, the con-
ditional probability associated with the {ω1,ω2} branch, is (1 + 5r)/4, in which case
the conditional probability associated with the other branch is (3− 5r)/4. In a similar
fashion, one analyzes the (1,{ω1,ω2}) node and finally the (1,{ω3,ω4}) node to obtain
(2 + 8r)/3, (1− 8r)/3, (1 + 4r)/3, and (2− 4r)/3 for the conditional probabilities as-
sociated with the branches leading into the (2,ω1), (2,ω2), (2,ω3), and (2,ω4) nodes,
respectively. Notice that all of these conditional probabilities are strictly positive when
0≤ r < 1/8, in accordance with our earlier observation that arbitrage opportunities will
exist when r ≥ 1/8. Moreover, notice these conditional probabilities are unique, that
is, no other choices will yield risk neutral probabilities for the underlying single period
models. Hence multiplying the conditional probabilities along the four paths leading to
the four states in Ω, we quickly obtain the same martingale measure Q that was derived
earlier in a different way. Indeed, we now recognize the earlier expressions for Q(ω) as
being simply the products of the appropriate conditional probabilities.

The martingale measures can be defined in terms of return processes instead of price
processes. We saw above that a strictly positive probability measure Q is a martingale
measure if and only if (3.23) is satisfied. Since ∆S∗n(t + 1) = S∗n(t)∆R∗n(t + 1), (3.23) is
true if and only if S∗n(t)EQ[∆R∗n(t +1)|Ft ] = 0 for all n and t < T . But S∗n(t) = 0 implies
∆R∗n(t +1) = 0 by the definition of the return process, so this last statement is true if and
only if:

EQ[∆R∗n(t +1)|Ft ] = 0, all n and t < T (3.24)
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that is, if and only if R∗n is a martingale under Q for all n. In summary, we have

The strictly positive probability measure Q is a martingale measure if and
only if R∗n is a martingale under Q for n = 1, . . . ,N.

(3.25)

The corresponding requirement in terms of the (undiscounted) return process Rn is
not so nice. It is not difficult to verify that

∆S∗n(t +1) = S∗n(t)
(

∆Rn(t +1)−∆R0(t +1)
1+∆R0(t +1)

)

so if all the price processes are strictly positive, then (3.23) is the same as

EQ

[
∆Rn(t +1)−∆R0(t +1)

1+∆R0(t +1)

∣∣∣∣Ft

]
= 0, all n and t < T (3.26)

Of course, we could have known immediately that this is equivalent to (3.24), in view of
the expression in section 3.2 for ∆R∗n in terms of ∆Rn.

Now suppose some of the securities pay a dividend. To check whether there are any
arbitrage opportunities, what really matters are the return processes of the securities, so
principle (3.25) remains true. In other words, there are no arbitrage opportunities if and
only if (3.24) (or (3.26)) holds, where now the return processes are defined in terms of
dividend processes as in section 3.2: ∆Rn(t + 1) = [∆Sn(t + 1)+ ∆Dn(t + 1)]/Sn(t) and
∆R∗n(t +1) = [∆S∗n(t +1)+∆Dn(t +1)/Bt+1]/S∗n(t). Thus (3.24) can be rewritten as

EQ[S∗n(t +1)+∆Dn(t +1)/Bt+1|Ft ] = S∗n(t), all n and t < T (3.27)

This makes sense: if the investor purchases one unit of security n at time t, then the
expected discounted value of this investment next period is equal to the discounted value
of the time t position.

Using (3.27) and a fundamental property of conditional expectations, it is easy to see
that

EQ[S∗n(t +2)+∆Dn(t +2)/Bt+2 +∆Dn(t +1)/Bt+1|Ft ]

= EQ
[
EQ[S∗n(t +2)+∆Dn(t +2)/Bt+2|Ft+1]+∆Dn(t +1)/Bt+1|Ft

]

= EQ[S∗n(t +1)+∆Dn(t +1)/Bt+1|Ft ]

= S∗n(t)

By a generalization of this argument, we therefore have:

If Q is a risk neutral probability measure, then for each risky security and
every t,s≥ 0

S∗n(t) = EQ[∆Dn(t +1)/Bt+1 + · · ·+∆Dn(t + s)/Bt+s +S∗n(t + s)|Ft ]

(3.28)

Thus the time t discounted price equals the conditional expected value of the discounted
dividend payments up through time t + s plus the time t + s discounted price.
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Turning to another topic which is analogous to a notion introduced for single period
models, a linear pricing measure is a non-negative vector π = (π1, . . . ,πk) such that for
every self-financing trading strategy H you have

V0 = ∑
ω

π(ω)V ∗
T (ω)

If Q is a risk neutral probability measure, then clearly it is also a linear pricing measure.
Conversely, any strictly positive linear pricing measure in must be a risk neutral prob-
ability measure. To see this, first take any trading strategy with H1 = · · · = HN = 0 to
conclude π1 + · · ·+ πk = 1. Next, fix arbitrary n, t < T , and some event A ∈ Ft = 1,
and consider the self-financing trading strategy which starts at time t = 0 with $1 in the
bank account and does no transactions unless event A occurs at time t, in which case
all the money is transferred into a long position in security n for one period, after which
it is immediately transferred back into the bank account, where it remains until time
T . The bank account equals Bt at time t, so with security n having value Sn(t)1A (here
1A denotes the indicator function of the event A, that is, 1A(ω) = 1 if ω ∈ A, whereas
1A(ω) = 0 if ω 6∈ A), this strategy entails a time t purchase of Bt/Sn(t) = 1/S∗n(t) units of
security n if event A occurs. Since all the money is transferred back to the bank account
at time t +1, the discounted gain under this trading strategy will be

G∗
T =

(
1A/S∗n(t)

)
∆S∗n(t +1) = 1A∆R∗n(t +1)

Now the trading strategy is self-financing, so (3.4) holds. Thus if π is a linear pricing
measure, it follows that

∑
ω

π(ω)G∗
T (ω) = 0

This is true for every A ∈ Ft , so taking Q(ω) = π(ω) we conclude by (3.24), (3.25),
and our expression for G∗

T that Q is a risk neutral probability measure.
In summary, a vector π is a linear pricing measure if and only if it is a probability

measure on Ω under which all the discounted price processes are martingales. This is
the multiperiod generalization of principle (1.8).

As with single period models, the law of one price holds for a multiperiod model if
there do not exist two trading strategies, say Ĥ and H̃, such that V̂T (ω) = ṼT (ω) for all
ω ∈Ω but V̂0 6= Ṽ0. Clearly the existence of a linear pricing measure implies that the law
of one price will hold.

Denote

W= {X ∈ RK : X = G∗ for some trading strategy H}
W⊥ = {Y ∈ RK : X ·Y = 0 for all X ∈W}
A= {X ∈ RK : X ≥ 0, X 6= 0}
P= {X ∈ RK : X1 + · · ·+XK = 1, X ≥ 0} and

P+ = {X ∈ P : X1 > 0, . . . ,XK > 0}
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Then just as with single period models, P∩W⊥ is the set of all the linear pricing mea-
sures and M ≡ P+∩W⊥ is the set of all risk neutral probability measures. Moreover,
fundamental principle (3.19) is the same thing as sayingW∩A= /0 if and only ifM 6= /0.
Notice thatM is a convex set whose closure equals P∩W⊥.

Exercise 3.10. Consider a 2-period problem with Ω = {ω1, . . . ,ω5}, r = 0, and one risky
security:

ω S0(ω) S1(ω) S2(ω)
ω1 6 5 3
ω2 6 5 4
ω3 6 5 8
ω4 6 7 6
ω5 6 7 8

The filtration is the one generated by this risky security. Show that the set of all the
martingale measures is

M= {Q∈R5 : Q1 = q/2, Q2 =(3−5q)/8, Q3 =(1+q)/8, Q4 = Q5 = 1/4, 0 < q < 3/5}
Show that P∩W⊥, the set of all the linear pricing measures, is equal to

M∪{(0,3/8,1/8,1/4,1/4)}∪{(3/10,0,1/5,1/4,1/4)}.
Exercise 3.11. Let Q be a probability measure, such as a risk neutral probability mea-
sure, that is equivalent to P, set XT (ω) = Q(ω)/P(ω), and let Xt = E[XT |Ft ] for t =
0,1, . . . ,T − 1. Show that X is strictly positive with X0 = 1. Let {Yt ; t = 0,1, . . . ,T}
be a stochastic process. Show that Y is a martingale under Q if and only if the pro-
cess {XtYt ; t = 0,1, . . . ,T} is a martingale under P. (Hint: use the abstract definition of
conditional expectations).

Exercise 3.12. Use exercise 3.11 to show that if there exists a martingale measure, then
there must exist a strictly positive, adapted, real-valued process Z = {Zt ; t = 0,1, . . . ,T}
satisfying Z0 = 1 and such that BtZt ,S1(t)Zt , . . ., and SN(t)Zt are all martingales under
P. Conversely, show that if there exists a process Z as indicated, then there must exist a
martingale measure Q. Moreover, show how to compute Q from a specified Z. (Note:
such a process Z is called a state-price deflator.)

Each period there are two possibilities: the security price either goes up by the factor
u (u > 1) or it goes down by the factor d (0 < d < 1). The probability of an up move
during a period is equal to the parameter p, and the moves over time are independent of
each other. Hence the binomial model is related to the process Nt (introduced in example
3.4) representing the number of heads after t independent coin flips. The process Nt , in
turn, is based upon what is called a Bernoulli process.
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The stochastic process {Xt ; t = 1,2, . . .} is said to be a Bernoulli process with param-
eter p if the random variables X1,X2, . . . are independent and P(Xt = 1) = 1−P(Xt =
0) = p for all t. Hence one should think of a sequence of coin flips where the event
{Xt = 1} means that the outcome of flip number t is a ‘head.’ The underlying sample
space Ω consists of all the sequences of the form

ω = (0,1,0,0,1,1, . . .)

with each ω ∈ Ω providing, in an obvious manner, a record of a possible sequence of
flips.

Strictly speaking, the Bernoulli process features an infinite number of coinflips, so
the vector ω has an infinite number of components and the sample space Ω has an
infinite number of states. However, our securities market model features just a finite
number T of periods, so for our purposes it suffices to consider a ‘modified’ Bernoulli
process corresponding to only T coin flips. Now each state ω will have T components,
each being either a 0 or a 1. There are 2T vectors like this, and the sample space for our
modified Bernoulli process will have exactly one of each. Whether standard or modified,
Xt(ω) will take the value 1 or 0 as the t th component of ω ∈ Ω is 1 or 0, respectively.
Moreover, Ft will be the algebra corresponding to the observations of the first t coin
flips, that is, Pt will be the partition consisting of 2t cells, one for each possible sequence
of t coin flips. And the probability measure is given by P(ω) = pn(1− p)T−n, where
ω ∈Ω is any state corresponding to n ‘heads’ and T −n ‘tails.’

The process {Nt ; t = 1,2, . . .} is defined in terms of the Bernoulli process (or the
modified Bernoulli process) by setting

Nt(ω) = X1(ω)+ · · ·+Xt(ω)

Hence the random variable Nt should be thought of as the number of heads in the first t
coin flips (or as the number of up moves by the security during the first t periods). Since
E[Xt ] = p and var(Xt) = p(1− p), it follows that, for any t,

E[Nt ] = t p

and
var(Nt) = t p(1− p)

Moreover, it is not difficult to show that

For all t = 1,2, . . .

P(Nt = n) =
(

t
n

)
pn(1− p)t−n, n = 0,1, . . . , t.

(3.29)

This is called the binomial probability distribution, and
(

t
n

)
=

t!
n!(t−n)!



98 CHAPTER 3. MULTIPERIOD SECURITIES MARKETS

is called a binomial coefficient.
We are now ready to define the binomial security price model. This model features

four parameters: p, d, u, and S0. where 0 < p < 1, 0 < d < 1 < u, and, of course, S0 > 0.
The time t price of the security is given simply by

St = S0uNt dt−Nt , t = 1,2, . . . ,T

Hence, as advertised, each period there are two possibilities: either with probability p
the coin flip is heads and the price goes up by the factor u, or with probability 1− p it is
tails and the price goes down by the factor d. Moreover, in view of (3.29), the probability
distribution of St is given by

P(St = S0undt−n) =
(

t
n

)
pn(1− p)t−n, n = 0,1, . . . , t (3.30)

Figure 3.4: Information tree for the binomial model (K = 2T )

With 2T elements in the underlying sample space, the information tree terminates
with 2T nodes, as illustrated in figure 3.4. In particular, there are 2T possible sample
paths for the security price process. However, it is convenient to use a more compact
diagram to illustrate the various possible sample paths. The event {St(ω) = S0undt−n}
occurs if and only if exactly n out of the first t moves are ‘up’ moves; the order of
these I moves does not matter. For example, {S2(ω) = S0ud} if either the first move
is an ‘up’ and the second is a ‘down,’ or vice versa. As you can see from (3.30), at
time t the price process St can take one of only t + 1 possible values, although there
are 2t possible sample paths of length t. Figure 3.5 shows a network where there is
one node corresponding to each event of the form {St(ω) = S0undt−n}. Note that the
number of ways this event can occur is equal to the number of paths to this event from
the beginning node, and this is equal to

(t
n

)
. While the kind of network shown in figure
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Figure 3.5: Lattice showing price process for the binomial model (T = 5)

3.5 is convenient for many purposes, it should not be confused with the information
structure network as in figure 3.4.

A desirable feature of the binomial security price model is that its return process is
given simply by

∆R1(t) = uXt d1−Xt −1, t = 1,2, . . . ,T (3.31)

In other words, either ∆R1 = u− 1 with probability p or ∆R1 = d− 1 with probability
1− p. In particular, the value of the return process is independent of the current price of
the security, a feature that is often desirable when modeling securities such as common
stocks.

What about the martingale measure? Assuming the interest rate is constant so that
∆R0(t) = r for all t, by (3.26) and (3.31) we must have

q
[

u−1− r
1+ r

]
+(1−q)

[
d−1− r

1+ r

]
= 0

where q is the conditional probability the next move is an ‘up’ move given the informa-
tion Ft at any time t. Hence

q =
1+ r−d

u−d
for all Ft and t. Since we need q < 1, we realize that there will exist a martingale
measure if and only if u > 1+ r. In this case the martingale measure is given by

Q(ω) = qn(1−q)T−n

where ω ∈Ω is any state corresponding to n ‘ups’ and T −n ‘downs.’ It follows that the
probability distribution of St under the risk neutral probability measure is given for all t
by

Q(St = S0undt−n) =
(

t
n

)
qn(1−q)t−n, n = 0,1, . . . , t (3.32)
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The binomial model lends itself to some useful computations, such as the probabil-
ity distribution for the maximum value achieved by the security process during the T
periods. We will derive this for the special case where d = u−1, thereby leading to the
simplification St = S0u2Nt−t . Define VT = max{St : t = 0,1, . . . ,T}, and note this random
variable takes the T + 1 values S0,S0u, . . . ,S0uT . Our aim is to compute P{YT ≥ S0ui}
for i = 1,2, . . . ,T .

Figure 3.6: The reflection principle

Fix i and notice that St ≥ S0ui if and only if 2Nt − t ≥ i, so P{YT ≥ S0ui} is the same
as P{2Nt − t ≥ i for some t}. We shall compute this latter probability with something
called the reflection principle, as illustrated in figure 3.6. The idea is to define the first
passage time τi ≡ min{t : 2Nt − t = i}, where τ = ∞ if 2Nt − t < i for all t ≤ T , and
consider all the sample paths for which τi ≤ T . There are three mutually exclusive
events. If i equals one of the values T,T −2,T −4, . . ., then it is possible to have 2NT −
T = i, in which case, of course, τi ≤ T . Secondly, you can have τi < T and 2NT −T > i.
Thirdly, you can have τi < T and 2NT −T < i. Hence

P{YT ≥ S0ui}= P{2Nt − t ≥ i for some t}
= P{event 1}+P{event 2}+P{event 3}

This first probability is

P{event 1}= P{NT = (T + i)/2}=
(

T
T+i

2

)
p(T+i)/2(1− p)(T−i)/2

when T + i is an even number, whereas P{event 1} = 0, otherwise. The second proba-
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bility is easy, because if 2NT −T > i, then automatically τi < T . Thus

P{event 2}= P{NT > (T + i)/2}=
T

∑
n=n∗

(
T
n

)
pn(1− p)T−n

where n∗ denotes the smallest integer strictly greater than (T + i)/2 (this sum is taken to
be zero if n∗ > T )

Computing the third probability is more difficult, and this is where we use the re-
flection principle. The idea is that each sample path in event 2 is paired with a unique
sample path in event 3. as illustrated in figure 3.6. The sample paths coincide up to time
τi, and then each is the mirror image of the other across the level i. Hence the number
of sample paths in the two events are equal, although the probabilities of the two events
are not equal unless p = 1/2.

To finish the computation of P{event 3} we need to do some bookkeeping. Consider
an arbitrary sample path from event 2, and suppose it is such that NT = n(≥ n∗). This
sample path occurs with probability pn(1− p)T−n and there are

(T
n

)
sample paths with

NT = n. Now upon looking at figure 3.6 it becomes apparent that the ‘partner’ of this
sample path terminates with NT = T + i−n, a symmetric distance below the level (T +
i)/2. The probability of this ‘partner’ sample path is pT+i−n(1− p)n−i. Since there are(T

n

)
sample paths in event 3 with NT = T + i−n, it follows that

P
{{event 3}∩{NT = T + i−n}} =

(
T
n

)
pT+i−n(1− p)n−i

in which case

P{event 3}=
T

∑
n=n∗

(
T
n

)
pT+i−n(1− p)n−i

Hence we finally have

P{YT ≥ S0ui}=
(

T
T+i

2

)
p(T+i)/2(1− p)(T−i)/2

+
T

∑
n=n∗

(
T
n

)[
pn(1− p)T−n + pT+i−n(1− p)n−i]

(3.33)

where the first term on the right hand side is zero when T + i is an odd number and where
n∗ denotes the smallest integer strictly greater than (T + i)/2.

We now have, in principle, the probability distribution for the maximum security price
during the T periods. More generally, these formulas can also be used for the maximum
security price during the first t periods when t < T . Since the event {Yt ≥ S0ui} is the
same as the event {Ti ≤ t}, we also have the probability distribution for the first passage
time to security price level S0ui.

Similar formulas can be derived for the probability distributions of the minimum
security price and the first passage times to price levels below S0.
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Exercise 3.13. Derive (3.29).

Exercise 3.14. For the case T = 4 and d = 1/u, compute the probability distributions of
YT and τ2.

3.6 Markov Models

This section will introduce a class of stochastic processes that share what is called the
‘Markov property’: the future is independent of the past, given the present values of
the process. Markov processes are important models of security prices, because they
are often realistic representations of true prices and yet the Markov property leads to
simplified computations.

Throughout this section the filtration F = {Ft ; t = 0,1, . . . ,T} is generated by a
stochastic process X = {Xt ; t = 0,1, . . . ,T}. This process takes values in some finite
set E, called the state space. If Xt = j ∈ E, we shall say ‘the process is in state j at
time t.’ The most common situation is for the state to be a scalar, but frequently it is
more convenient for the state to be a vector. As usual, there is a sample space Ω and a
probability measure P on it, and the information Ft should be thought of as the history
of the present and past values of the process X .

The stochastic process X is said to be a Markov chain if

P{Xt+1 = j|Ft}= P{Xt+1 = j|Xt}
for all j ∈ E and all t. By elementary probability calculations, it follows that

P{Xt+s = j|Ft}= P{Xt+s = j|Xt}, all s≥ 1 (3.34)

Thus a Markov chain is a stochastic process where the only information useful for
predicting future values is the current state; in other words, given the history of the
process, the past values can be ignored as long as you know the present state.

The Markov chain X is said to be stationary or time-homogeneous if the conditional
probabilities P{Xt+1 = j|Ft} do not depend on time t. In this case it is convenient to
define the transition probabilities

P(i, j)≡ P{Xt+1 = j|Xt = i}, i, j ∈ E

and to organize them into a transition matrix

P≡ [
P(i, j)

]

Note this is a square matrix with the number of rows equal to the number of elements
in the state space E. Moreover, the sum of the elements in each row of P equals one. It
should be clear from the context whether P denotes the probability measure, a transition
probability, or the transition matrix.
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If the Markov chain is not stationary, then one can still talk about the transition prob-
abilities, only now they depend on time: Pt(i, j) ≡ P{Xt+1 = j|Xt = i}. In this more
general case there is a distinct transition matrix for each point in time:

Pt ≡
[
Pt(i, j)

]

Example 3.6. The process N = {Nt ; t = 1, . . . ,T} studied in section 3.5 and representing
the number of heads in t flips of a coin that lands ‘head’ with probability p is an example
of a stationary Markov chain. For the state space it is convenient to take {0,1, . . . ,T}, in
which case the transition matrix is

P =




1− p p 0 · · · 0
0 1− p p · · · 0
...

...
... . . . ...

0 0 0 · · · 1




Since this Markov chain starts in state 0, it can only reach state T at the final time period
T , and so the transition probabilities from state T do not really matter, except that they
must add up to one. We arbitrarily took P(T,T ) = 1, meaning that the Markov chain
would remain in state T forever, even if it were to keep operating after time T .

A useful property of Markov chains is provided by the following:

If Y = f (Xt ,Xt+1, . . . ,XT ) for some function f , then

E[Y |Ft ] = E[Y |Xt ]
(3.35)

This says the future and the past are conditionally independent, given the present.
Now suppose we have a securities market model where the discounted price process

is a Markov chain. This means that P{S∗t+1 = j|Ft} = P{S∗t+1 = j|S∗t } for all j ∈ E
and t. It is natural to wonder whether anything special can be said about the martingale
measure, if there is one. In particular, one should ask whether the discounted security
prices are Markov chains under the martingale measure. This is a non-trivial question,
because a stochastic process may lose its Markov property when you change from one
probability measure to an equivalent one. For example, you can make the third coin flip
depend on the first coin flip just by changing the probability measure associated with the
heads counting process Nt in example 3.5.

It turns out, however, that our question can be answered in the affirmative:

If there are no arbitrage opportunities, if the discounted price process S∗

is a Markov chain under P, and if the filtration F is the one generated by
S∗, then there exists a martingale measure Q under which S∗ is a Markov
chain.

(3.36)

To see this, suppose the Markov chain (under P) is stationary, and consider the con-
struction of the martingale measure as developed in section 3.4. In particular, consider
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the conditional probabilities associated with the ‘single period model’ associated with
an individual node of the information tree. If the corresponding, current state of the
discounted price process S∗ is s, then the conditional, risk neutral probabilities must be,
of course, such that the expected value of S∗ at the end of the period is equal to s. But
there is a one-to-one correspondence between each branch leading out of this node and
each transition probability P(s, j) from state s that is strictly positive. In other words,
P(s, j) > 0 if and only if j is a possible state for S∗ at the end of the period. Hence choos-
ing the risk neutral conditional probabilities for this node amounts to suitably choosing
new transition probabilities Q(s, j) from state s, making sure Q(s, j) > 0 if and only if
P(s, j) > 0 for all j. By hypothesis, we know this choice can be made.

Now there may be many other nodes in the information tree where the corresponding,
current state of S∗ is s, but the same situation will exist. The single period models will all
be identical, and so you can choose the same set of risk neutral transition probabilities
Q(s, j) for all these nodes.

In a similar manner, one chooses the risk neutral transition probabilities for all the
other nodes in the information tree, making sure the probabilities are the same for all
the nodes that share the same value for the current state of the discounted price process.
Hence not only does this lead to the risk neutral probability measure Q as was derived
in section 3.4, but these transition probabilities form a Markov transition matrix under
which S∗ is a Markov chain. Hence (3.36) is true when S∗ is a stationary Markov chain
under P, and this argument can be easily extended to cover the case where S∗ is a Markov
chain that is not stationary.

It follows from (3.35) and (3.36) that EQ[S∗n(t + s)|Ft ] = EQ[S∗n(t + s)|S∗t ]. Hence the
standard relationship for Q to be a martingale measure can be written as

S∗n(t) = EQ[S∗n(t + s)|S∗t ], all n, t, and s

If the original price process St is a Markov chain under P and the bank account Bt

is deterministic, then the discounted price process S∗t = St/Bt will also be a Markov
chain. However, if the bank account process is stochastic, even a Markov chain, then the
discounted price process will not necessarily be a Markov chain. In this case all is not
lost; it might still be possible to take advantage of the Markov properties of the model.

One way to proceed when Bt is stochastic is to set up the securities market model
with an underlying stochastic process X that is a stationary Markov chain under P and
with the filtration being generated by this process. For example, Xt could be a vector of
the current prices of all the relevant securities. In doing this, one would normally fix the
initial state X0 = i0 and then let the sample space Ω be the set of all the possible sample
paths of X . Then if ω ∈ Ω corresponds to the sample path (i0, i1, i2, . . . , iT ), one would
take the probability measure to be such that P{ω}= P(i0, i1)P(i1, i2) · · ·P(iT−1, iT ).

Next, suppose for each t that ft is a real valued function on the state space E such that
the bank account process satisfies Bt = ft(Xt). If the risky security price processes are
defined in a similar manner, then the discounted price processes can also be expressed as
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functions of the underlying Markov chain X , being the ratio of two such functions. Now
none of these price process is necessarily a Markov chain; for example, the function f
may give rise to the same price for two distinct states in E. However, we may re-do the
argument for (3.36) and recover a useful result.

Again, we look at the single period model associated with each node of the informa-
tion tree, only now associated with each node is the current state of the Markov chain
X . We construct the conditional probabilities Q(i, j) and the martingale measure Q as
before, only now X will turn out to be a Markov chain under Q. Hence by (3.35) we
will have for the resulting Q that EQ[S∗n(t + s)|Ft ] = EQ[S∗n(t + s)|Xt ], in which case the
standard relationship for Q to be a martingale measure can be written as

S∗n(t) = EQ[S∗n(t + s)|Xt ], all n, t, and s

Example 3.5 (continued) Taking ft(x) = S0uxdt−x we have for the binomial security
price model of section 3.5 St = ft(Nt), where the head counting process Nt is a Markov
chain, as discussed earlier. Actually, St is also a stationary Markov chain, even though
ft depends on t, because the future changes in the price process depend only on the fu-
ture ‘corn flips,’ which are independent of time. If s is the state where St = s, then the
transition probability P(s, j) = p if j = su, P(s, j) = 1− p if j = sd, and P(s, j) = 0, oth-
erwise. For general parameters u and d the state space is rather messy, as it can contain
up to (T +1)(T +2)/2 distinct values, that is, the number of nodes in the network such
as figure 3.4. However, in the important special case where d = u−1, the state space has
only 2T +1 distinct values, as can be seen by studying figure 3.5.

To demonstrate the preceding equations which the martingale measure Q must satisfy,
we have S∗t = S0uNt dt−Nt/(1+ r)t and

EQ[S∗t+1|S∗t ] = EQ
[

S0uXt+1+Nt dt+1−Xt+1−Nt/(1+ r)t+1∣∣S∗t
]

=
(
S∗t /(1+ r)

)
EQ

[
uXt+1d1−Xt+1

∣∣S∗t
]

=
(
S∗t /(1+ r)

)
EQ

[
uXt+1d1−Xt+1

]

=
(
S∗t /(1+ r)

)[
1+ r−d

u−d
u+

u−1− r
u−d

d
]

= S∗t

Similarly, one verifies EQ[S∗t+1|Nt ] = S∗t .

A virtue of Markov chains is that it is straightforward to compute conditional proba-
bility distributions for the state of the Markov chain at a specified number of periods in
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the future. For example,

P{X2 = j|X0 = i}= ∑
k∈E

P{X2 = j,X1 = k|X0 = i}

= ∑
k∈E

P{X2 = j|X1 = k,X0 = i}P{X1 = k|X0 = i}

= ∑
k∈E

P{X2 = j|X1 = k}P{X1 = k|X0 = i}

= ∑
k∈E

P1(k, j)P0(i,k)

We recognize this last expression as the result of matrix multiplication. In other words,
P{Xt+2 = j|Xt = i} will be equal to the i jth element of the matrix product PtPt+1. This
pattern extends to any number of periods: P{Xt+s = j|Xt = i} will be equal to the i jth
element of the matrix product PtPt+1 . . .Pt+s−1. Of course, in the stationary case one
simply has PtPt+1 . . .Pt+s−1 = Ps.

Example 3.7. Consider the binomial security process model with d = u−1 the price
process St is a Markov chain with state space

E =
{

S0u−T ,S0u−T+1, . . . ,S0u−1,S0,S0u, . . . ,S0uT−1,S0uT }
.

But suppose the conditional probability of an ‘up’ move varies with the state. En partic-
ular, suppose P{St+1 = S0ui−1|St = S0ui}= 1− pi and P{St+1 = S0ui+1|St = S0ui}= pi

for 2T − 1 parameters pi, i = −T + 1, . . . ,−1,0,1, . . . ,T − 1. (For example, the model
builder could give price level So a measure of stability by setting pi > 1/2 for i < 0 and
pi < 1/2 for i > 0). Thus the transition matrix is




1 0 0
1− p−T+1 0 p−T+1

1− p−1 0 p−1

1− p0 0 p0

1− p1 0 p1

1− pT−1 0 pT−1

0 0 1




and, for example, P{S3 = S0u}= (1− p0)p−1 p0 + p0(1− p1)p0 + p0 p1(1− p2).

Exercise 3.15. Derive (3.35).

Exercise 3.16. Derive (3.34). (Hint: Use (3.35))

Exercise 3.17. Prove by mathematical induction for a stationary Markov chain X with
transition matrix P that P{Xt+s = j|Xt + i} is equal to the i jth element of the s-fold
matrix product of P.



Chapter 4

Options, Futures, and Other Derivatives

4.1 Contingent Claims

A contingent claim is a random variable X that represents the time T payoff from a
‘seller’ to a ‘buyer.’ This definition is essentially the same as for single period models,
and it turns out that the basic ideas are very similar as well. However, much more can
be said, primarily because the multiperiod setting leads to a number of rich examples,
many of which see practical use in the financial industry.

In most instances the random variable X can be taken to be some function of an
underlying security price, and so contingent claims are examples of what are called
derivative securities. With a single period model, contingent claims are about the only
kind of derivative security you can think of. But with several periods to work with it is
possible to consider other kinds of derivative securities, that is, securities whose values
depend on underlying securities but which cannot be modeled as a time T payoff X .
Other kinds of derivatives will be discussed later in this chapter.

As with single period models, a contingent claim is like a contract or agreement
between two parties. Since one party (the seller) promises to pay the other party (the
buyer) the amount X at time T , the buyer will normally pay some money to the seller
when they make their agreement, say at time t < T . The fundamental question to be
addressed is: what is the appropriate value for this time t payment? In other words, what
is the time t value of this contingent claim?

In general, the time T payoff X can be strictly negative for some states of the world
ω ∈Ω. This amounts to a payment by the buyer to the seller. In contrast, of considerable
importance is the case where the buyer has the option at time T to proceed with the
payment at that time. In this case, called a European option, the payment will naturally
take place if and only if it is positive. Consequently, European options are the same
things as nonnegative contingent claims.

Example 4.1. Consider the simple model with T = 2 and K = 4 that was introduced as
example 3.3 in chapter 3. The single risky security is as follows:

107
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ωk t = 0 t = 1 t = 2
ω1 S0 = 5 S1 = 8 S2 = 9
ω2 S0 = 5 S1 = 8 S2 = 6
ω3 S0 = 5 S1 = 4 S2 = 6
ω4 S0 = 5 S1 = 4 S2 = 3

If X = S2−5, the net profit at time T = 2 for purchasing one unit of the security for the
price 5, then the payoff is negative in state ω4. But if this is a European option, then one
should take X = max{S2− 5,0}, so X(ω) takes the values 4, 1, 1, and 0 in states ω1,
ω2, ω3, and ω4, respectively. This European option is called a call option with exercise
price 5. Similarly, X = max{e−S2,0} is a put option with exercise price e, that is, X is
the option to sell one unit of the security for the price e at time T = 2.

Example 4.2. Suppose for the same securities market model as in example 4.1 that
X = max{[S0 + S1 + S2]/3− 5,0}, so that X(ω) takes the values 7/3, 4/3, 0, and 0 in
states ω1, ω2, ω3, and ω4, respectively. Now X is an example of what is called an
Asian or averaging option. Options like this are used to hedge against rising prices for
parties who need to buy fixed quantities of the security every period. Unlike put and call
options, where the value of X depends only on the final value of the security, here the
value of X depends on the whole history of the security.

Throughout this chapter it will be assumed that the securities market model is eco-
nomically reasonable, that is, there exists a risk neutral probability measure Q. A con-
tingent claim is said to be marketable or attainable if there exists a self-financing trading
strategy such that VT (ω) = X(ω) for all ω ∈Ω. The corresponding portfolio or trading
strategy H is said to replicate or generate X . In the case of single period models, the
time t = 0 value of a contingent claim was seen to be the expectation under a risk neutral
probability measure of the discounted value of the claim. In the multiperiod case this
conclusion generalizes slightly to:

Risk neutral valuation principle: The time t value of a marketable contin-
gent claim X is equal to Vt , the time t value of the portfolio which replicates
X . Moreover,

V ∗
t = Vt/Bt = EQ[X/BT |Ft ], t = 0,1, . . . ,T

for all risk neutral probability measures Q.

(4.1)

The first statement in (4.1) is a con sequence of the law of one price. Indeed (as
will be discussed more fully below), if X could be purchased or sold at time t for an
amount other than Vt . then one could exploit an arbitrage opportunity by taking suitable
positions in this contingent claim and the other securities. Since VT = X if and only if
V ∗

T = X/BT , the equation in (4.1) follows from the fact that V ∗ is a martingale under Q
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(see (3.21)).

Example 4.1 (continued) Suppose r = 0 (see example 3.3) so Q =(1/6,1/12,1/4,1/2).
If the call option with exercise price e = 5 is attainable, then its time t = 0 value must be

V0 = EQ[X ] =
1
6
(4)+

1
12

(1)+
1
4
(1)+

1
2
(0) = 1

In states ω1 and ω2 we have

V1 = EQ[X |S1 = 8] =
2
3
(4)+

1
3
(1) = 3

while in states ω3 and ω4 we have

V1 = EQ[X |S1 = 4] =
1
3
(1)+

2
3
(0) =

1
3

Similarly, the put with exercise price e = 5 pays off the amounts 0, 0, 0, and 2 in states
ω1 to ω4, respectively, so V0 = 1, V1 = 0 in states ω1 and ω2, and V1 = 4/3 in states ω3

and ω4.

It is important to be able to compute the trading strategy which generates a particular
contingent claim. For one thing, this verifies that the contingent claim is indeed attain-
able. Moreover, even if you know the contingent claim is attainable, you may want to
use the replicating trading strategy, perhaps to hedge a position in the contingent claim.

There are several good methods for computing replicating trading strategies. For the
first method you already know the value process V for the replicating portfolio, and so
you solve for the trading strategy H using the linear equations (one for each state) in the
definition of the value process

Vt = H0(t)Bt +
N

∑
n=1

Hn(t)Sn(t)

and keeping in mind that H is predictable. This is illustrated in the following example:

Example 4.1 (continued) For t = 2 we have

V2(ω1) = 4 = H0(2)(ω1)1+H1(2)(ω1)9

V2(ω2) = 1 = H0(2)(ω2)1+H1(2)(ω2)6

V2(ω3) = 1 = H0(2)(ω3)1+H1(2)(ω3)6

V2(ω4) = 0 = H0(2)(ω4)1+H1(2)(ω4)3

Since H is predictable we also have

H0(2)(ω1)1 = H0(2)(ω2) H0(2)(ω3)1 = H0(2)(ω4)

H1(2)(ω1)1 = H1(2)(ω2) H1(2)(ω3)1 = H1(2)(ω4)
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Solving these equations yields H0(2) =−5 and H1(2) = 1 in states ω1, and ω2, whereas
H0(2) =−1 and H1(2) = 1/3 in states ω3 and ω4. Meanwhile, for t = 1 we have

V1(ω) = 3 = H0(1)(ω)1+H1(1)(ω)8, ω = ω1,ω2

V1(ω) =
1
3

= H0(1)(ω)1+H1(1)(ω)4, ω = ω3,ω4

H0(1)(ω1) = H0(1)(ω2) = H0(1)(ω3) = H0(1)(ω4)

H1(1)(ω1) = H1(1)(ω2) = H1(1)(ω3) = H1(1)(ω4)

Solving these gives H0(1) =−7/3 and H1(1) = 2/3 for all ω .

For the second method for computing a replicating trading strategy, suppose all you
know is X . You then work backwards in time, deriving V and H simultaneously. Since
VT = X , you first solve

X = H0(T )BT +
N

∑
n=1

Hn(T )Sn(T )

for H(T ) as in the first method. Since H is self-financing, it follows that

VT−1 = H0(T )BT−1 +
N

∑
n=1

Hn(T )Sn(T −1)

so now you know VT−1.
Next you solve

VT−1 = H0(T −1)BT−1 +
N

∑
n=1

Hn(T −1)Sn(T −1)

for H(T − 1) as in the first method, and then you compute VT−2. You repeat this cycle
working backwards in time until, finally, you compute V0.

Example 4.1 (continued) Using this second method we first compute H0(2) =−5 and
H1(2) = 1 for states ω1 and ω2, so V1 =−5(1)+1(8) = 3 in these same two states. Simi-
larly, H0(2) =−1 and H1(2) = 1/3 in states ω3 and ω4, so V1 =−1(1)+(1/3)(4) = 1/3
in these same two states. Next we use these values of V1 to compute H0(1) =−7/3 and
H1(1) = 2/3 for all ω . Finally, we see that V0 = (−7/3)(1)+(2/3)(5) = 1 for all ω .

Still another method for computing a replicating strategy involves working with the
discounted prices and the discounted value process. The self-financing equation V ∗

0 +
G∗

t = V ∗
t is the same thing as

V ∗
t−1(ω)+

N

∑
n=1

Hn(t)(ω)∆S∗n(t)(ω) = V ∗
t (ω)

So if you know V ∗
t , then you can use this system of equations together with the pre-

dictability requirement to solve for V ∗
t−1 along with the positions H1(t), . . . ,HN(t). Hence
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you begin with t = T and V ∗
T = X/BT and you work backwards in time, computing the

discounted value process V ∗ of the replicating portfolio as well as the replicating trading
strategy’s positions in all the risky securities. This gives V = V ∗B. Finally, using the
definition of either V or V ∗, you compute H0, the positions in the bank account. This is
illustrated in the following example.

Example 4.2 (continued) Assuming r = 0, the equations are

V ∗
1 +H1(2)(1) = 7/3

and
V ∗

1 +H1(2)(−2) = 4/3

in states ω1 and ω2, respectively. Hence V ∗
1 = 2 and H1(2) = 1/3 in these same states.

Similarly, the equations
V ∗

1 +H1(2)(2) = 0

and
V ∗

1 +H1(2)(−1) = 0

give V ∗
1 = 0 and H1(2) = 0 in states ω3 and ω4.

For the second iteration we have

V ∗
0 (ω)+H1(1)(ω)(3) = 2, ω = ω1,ω2

V ∗
0 (ω)+H1(1)(ω)(−1) = 0, ω = ω3,ω4

Hence V ∗
0 = 1/2 and H1(1) = 1/2 for all ω .

It remains to compute H0. Using H0(1) = V ∗
0 −H1(1)S0 we get H0(1) = −2. Simi-

larly, we get H0(2) =−2/3 in states ω1 and ω2, and we get H0(2) = 0 in states ω3 and
ω4. Note that EQ[X ] = (1/6)(7/3)+ (1/12)(4/3) = 1/2, the same as the value of V ∗0
that was already computed.

We now return to the earlier discussion of arbitrage pricing. If the actual traded price
of a contingent claim differs from the value of the replicating portfolio, then one can
find an arbitrage opportunity. To see this, let Pt denote the actual time t price of the
contingent claim.

First suppose Pt > Vt . Then sell the contingent claim for Pt , collecting this amount.
Simultaneously, begin the replicating trading strategy with an initial amount of capital
equal to Vt . Invest the difference, Pt −Vt , at the bank account rate. At time T your
liability on the contingent claim will be PT = X , but this will coincide exactly with your
replicating portfolio. One will precisely offset the other. Meanwhile, the investment in
the bank account has become (Pt −Vt)BT /Bt > 0, a sure profit.

On the other hand, if Pt < Vt , then you do the opposite of these transactions. You buy
the contingent claim, follow the negative of the replicating trading strategy (thereby col-
lecting Vt dollars), and invest the difference Vt −Pt in the bank account. At time T your
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liability VT is exactly offset by the value PT = X of the contingent claim. Meanwhile,
you now have (Vt −Pt)BT /Bt > 0 in the bank.

Turning to another topic, if the bank account process B is deterministic (see exercise
4.3) then a call option on a security is marketable if and only if the put option on the
same security with the same exercise price is marketable. If they are both marketable,
then one has the put-call parity relationship:

p = c+ eEQ[1/BT ]−S0 (4.2)

where c and p are the time t = 0 prices of the call and put options, respectively, both
having the common exercise price e and the underlying security S. This is one in a
number of examples where the price of the option of interest (in this case the put) can
be expressed as a linear combination of the prices of one or more conventional calls,
the price of the underlying security, and the ‘forward’ price EQ[1/BT ]. Here is another
example.

Example 4.3. Suppose the buyer acquires at time 0 an option which provides the right
to choose at fixed time t, where 0 < t < T , between a call option and a put option, both
having the same exercise price e and expiring at time T . This is called a chooser option.
If Ct and Ft denote their respective time t prices, then the option buyer will choose the
call if and only if Ct ≥ Pt , in which case the time T payoff will be

(ST − e)+1{Ct≥Pt}+(e−ST )+1{Ct<Pt}

where 1A. the indicator function of the event A, equals one if event A occurs and equals
zero if it does not. We are interested in computing the time 0 value of this option with
the risk neutral valuation principle (4.1).

Now by adding and subtracting the term (ST − e)+1{Ct<Pt}, it follows that the time T
payoff of the chooser option is equal to

(ST − e)+ +(e−ST )+1{Ct<Pt}

Hence by risk neutral valuation, if this chooser option is marketable, then its time 0 price
is equal to the price of the ordinary call option (ST − e)+ plus the quantity

EQ
[
(e−ST )1{Ct<Pt}/BT

]
(4.3)

Assuming the interest rate r is constant and the call option (ST − e)+ marketable, ex-
pression (4.3) has a simple form. The put-call parity relationship (4.2) applies at time t,
so the event Ct < Pt is the same as the event St < e(1+ r)t−T . Hence

EQ
[
(e−ST )1{Ct<Pt}/BT

]
= EQ

[
EQ

[
(e−ST )1{Ct<Pt}/(1+ r)T |Ft

]]

= EQ
[
1{Ct<Pt}EQ

[
(e−ST )/(1+ r)T |Ft

]]

= EQ
[
1{Ct<Pt}(1+ r)−t {e(1+ r)t−T −EQ

[
ST (1+ r)t−T |Ft

]}]

= EQ
[
1{Ct<Pt}(1+ r)−t [e(1+ r)t−T −St ]

]

= EQ

[
1{St<e(1+r)t−T }[e(1+ r)t−T −St ]/(1+ r)t

]
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where the next to last equality uses the fact that the discounted price process S∗ = S/B
is a martingale under Q. We recognize the final expression to be the time 0 price of
an ordinary put option that has exercise price e(1 + r)t−T and expires at time t. Hence
under the indicated assumptions the time 0 price of the chooser option equals the price of
a certain ordinary call plus the price of a certain ordinary put, with the latter expressable
in terms of another call by the put-call parity relationship.

Example 4.1 (continued) With interest rate r = 0 and exercise price e = 5, consider the
chooser option where the buyer chooses between the put and call at time t = 1. By our
earlier calculations for the ordinary put and call, the chooser option buyer will choose
the call if S1 = 8 and will choose the put if S1 = 4. Hence the chooser option will pay
off the amounts 4, 1, 0, and 2 in states ω1 to ω4, respectively, at time 2. The time 0 price
of this chooser option is

V0 =
1
6
(4)+

1
12

(1)+
1
4
(0)+

1
2
(2) = 1

3
4

Meanwhile, the put with exercise price 5 that expires at time 1 will pay off the amount
0 if S1 = 8 and the amount 1 if S1 = 4, so its time 0 price is 1

4(0)+ 3
4(1) = 3

4 . The time
0 price of the call that expires at time 2 was calculated earlier and found to be 1, so this
illustrates that the price of the chooser option equals the price of this put plus the price
of this call.

Of course, options can be defined in terms of two or more underlying securities. For
example, given a function g : RN → R+ one can take X = g(S1(T ), . . . ,SN(T )). Then
if you know thejoint probability distribution of the random variables S1(T ), . . . ,SN(T )
under the martingale measure, it is easy to compute the time 0 value of this contingent
claim. In particular, with

g(s1, . . . ,sN) = (a1s1 + · · ·+aNsN − e)+

for positive scalars a1, . . . ,aN you could have a call option on a stock index. Or with

g(s1, . . . ,sN) = max{s1, . . . ,sN,e}
you would have a contingent claim delivering the best of N securities and the cash
amount e.

Example 4.4. Suppose K = 9, N = 2, T = 2, r = 0, and the price processes and infor-
mation structure are as displayed in figure 4.1. There is a unique risk neutral probability
measure Q for this model; it is also displayed in figure 4.1. Now consider a call option
with exercise price e = 13 on the time T = 2 value of the stock index S1(t)+ S2(t). In
other words, this contingent claim X = (S1(2)+S2(2)−13)+ and is displayed in figure
4.1. As will be explained in section 4.4, X is marketable. Hence its time 0 price is easily
computed to be EQX = 19/18.
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Figure 4.1: Data for example 4.4

Exercise 4.1. Consider the usual two-period model as in example 4.1 with r = 0. Com-
pute the time t = 0 values and the replicating trading strategies for the following Euro-
pean options:

(a) A call option with exercise price 7.

(b) A put option with exercise price 7.

(c) An Asian put option with exercise price 7.

(d) A chooser option with exercise price 7 and decision time 1.

Exercise 4.2. A look-back option is one where the payoff is based on the maximum
(or perhaps the minimum) price of the underlying security during a recent time interval.
Compute the time t = 0 value and the replicating strategy for the following look-back
call option: X = max{0,S0− 7,S1− 7,S2− 7}. As usual, work with the two period
model of example 4.1 with r = 0.

Exercise 4.3. Consider a European put and a European call option on the same security
S, where they have the same expiration date T and the same exercise price e.

(a) Show that (4.2) holds if both the put and call are marketable (Hint: use (ST − e)+−
(e−ST )+ = ST −e to show that the claim with time T payment equal to the constant
e is also marketable).

(b) Show that if the bank account process B is deterministic, then the call option is
marketable if and only if the corresponding put option is marketable (Hint: specify
the trading strategy which replicates the constant payment e).

(c) Show that if the bank account process B is predictable but not deterministic, then it
is possible for a call to be marketable even though the corresponding put as well as
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the claim with time T payment equal to the constant e are not marketable. Do this by
considering the model with T = 2, K = 6, N = 1, P1 = {{ω1,ω2},{ω3,ω4},{ω5,ω6}},
S0 = 40, options expiring at T = 2 with e = 43 48

109 , and prices as follows:

ω B1(ω) S1(ω) B2(ω) S2(ω)
ω1 1.10 45 1.232 55
ω2 1.10 45 1.232 40
ω3 1.10 40 1.21 50
ω4 1.10 40 1.21 35
ω5 1.10 35 1.188 40
ω6 1.10 35 1.188 30

Exercise 4.4. For the model in example 4.4, compute the time 0 price and the replicating
portfolio for the following options:

(a) Call with e = 13 on the time 2 value of the index S1 +S2 (hint: we already know the
price is 19/18).

(b) Put with e = 13 on the time 2 value of the index S1 +S2.

(c) An option to acquire the maximum of S1(2) and S2(2).

(d) A call with e = 6 on max{S1(2),S2(2)}.

(e) An Asian (i.e., averaging) call option with e = 13 on the index S1 +S2.

4.2 European Options Under the Binomial Model

The binomial model was introduced in section 3.4. It consists of a single risky security
satisfying

St = S0uNt dt−Nt , t = 1,2, . . . ,T

where 0 < d < 1 < u and N = {Nt ; t = 1, . . . ,T} is a binomial process with parameter
p, 0 < p < 1. Assuming the interest rate r is constant with u > 1 + r, there exists a
martingale measure; it is given by

Q(ω) = qn(1−q)T−n, q =
1+ r−d

u−d

where ω ∈Ω is any state corresponding to n ‘up moves’ and T −n ‘down moves’ by the
risky security.

The probability distribution of St under the martingale measure is given by (3.32).
Hence if a contingent claim is of the form

X = g(ST )
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for a specified real-valued function g, then the time t = 0 value of X is given by

V0 = (1+ r)−T EQg(ST )

= (1+ r)−T
T

∑
n=0

(
T
n

)
qn(1−q)T−ng

(
S0undT−n) (4.4)

The binomial model is a good illustration of a useful principle: if the underlying
securities are Markov chains, then you probably can work out explicitly the probability
distribution for the time T values of the securities under the martingale measure, in
which case you can compute explicit formulas for the values of contingent claims which
are of the form X = g(ST ).

Example 4.5. For a call option with exercise price e we have

g(s) = (s− e)+ =

{
s− e, s≥ e

0, s≤ e

Hence the time t = 0 price is

V0 = (1+ r)−T
T

∑
n=0

(
T
n

)
qn(1−q)T−n max

{
0,S0undT−n− e

}

Note that

S0undT−n− e > 0⇐⇒ (u/d)n > e/(S0dT )

⇐⇒ n log(u/d) > log
(
e/(S0dT )

)

⇐⇒ n >
log

(
e/(S0dT )

)

log(u/d)

We define n̂ to be the smallest non-negative integer n such that this strict inequality is
satisfied.

Now if n̂ > T , then S0undT−n ≤ e for all n ≤ T , in which case V0 = 0. On the other
hand, if 0 ≤ n̂ ≤ T , then there is a chance the call option will finish in the money, in
which case V0 > 0. In particular,

V0 = (1+ r)−T
n̂−1

∑
n=0

(
T
n

)
qn(1−q)T−n(0)

+(1+ r)−T
T

∑
n=n̂

(
T
n

)
qn(1−q)T−n [

S0undT−n− e
]

=
S0

(1+ r)T

T

∑
n=n̂

(
T
n

)
qn(1−q)T−nundT−n− e

(1+ r)T

T

∑
n=n̂

(
T
n

)
qn(1−q)T−n

= S0

T

∑
n=n̂

(
T
n

)[
qu

1+ r

]n [
(1−q)d

1+ r

]T−n

− e
(1+ r)T

T

∑
n=n̂

(
T
n

)
qn(1−q)T−n

= S0

T

∑
n=n̂

(
T
n

)
q̂n(1− q̂)T−n− e

(1+ r)T

T

∑
n=n̂

(
T
n

)
qn(1−q)T−n
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where q̂ ≡ qu/(1 + r). It is left to the reader to use elementary algebra to verify that
1− q̂ = (1−q)d/(1+ r) and 0 < q̂ < 1. Hence both terms in the formula for V0 involve
the sum of T − n̂+1 binomial probabilities.

Example 4.6. Consider a look-back call option X = (YT −e)+, where YT = max{St : t =
0,1, . . . ,T}, as introduced in section 3.4. Assume d = u−1, so that YT will take one of the
T +1 values S0,S0u, . . ., or S0uT . Under the martingale measure, the probability P{YT >

S0ui} is given for i = 1, . . . ,T by formula (3.33), only with parameter q in place of p.
Hence in principle we have the probability distribution of YT , and so it is straightforward
to compute a formula for the time t = 0 price (1+r)−T EQ(YT −e)+. Similar approaches
will work for the look-back put option X = (e−YT )+ as well as look-back puts and calls
based on the minimum security price level reached before time T .

Example 4.7. Knockout options are ones which expire worthless if the price level ever
hits a specified level, say k. For example, suppose S0 < k, e < k, X = (ST − e)+ if the
maximum price YT < k, and X = 0 if YT ≥ k. The ideas developed in section 3.4 and
applied in example 4.6 can be used to value this option.

Suppose d = u−1 and i is such that S0ui = k. As explained in section 3.4. we know, at
least in principle, the probability distribution under the martingale measure of τi, the first
passage time to security price level k. Note that τi takes one of the values 1,2, . . . ,T , or, if
the security price never reaches the level k, infinity. Moreover, we know the conditional
probability Q{ST = S0ui|τi = t} is the same as the conditional probability Q{ST−t =
S0u j−i|S0 = k}, where integer j < i. In other words, this conditional probability is the
same as the probability that the price process which is at level k at time t will find itself
exactly i− j price levels lower after the remaining T − t periods. Under the martingale
measure, this conditional probability is

Q{ST = S0u j|τi = t}=
(

T − t
n

)
qn(1−q)T−t−n, j < i

provided n≡ (T − t + j− i)/2 is an integer (here n is the number of ‘up moves’ during
the last T − t periods so that the price moves from level k to level S0u j). Hence we can
compute the joint probability distribution

Q{ST = S0u j,τi = t}= Q{ST = S0u j|τi = t}Q{τi = t}

for j < i and t = 1, . . . ,T . Next we easily compute for j < i

Q{ST = S0u j,τi = ∞}= Q{ST = S0u j}−
T

∑
t=1

Q{ST = S0u j,τi = t}

All these probabilities, of course, are under the martingale measure Q. Finally, we
compute the price (1+r)−T EQX of the knockout option by using (1+r)−T ∑ j<i Q{ST =
S0u j,τi = ∞}(S0u j− e)+.
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The option in example 4.7 is also called an up-and-out call. You could also have
a down-and-out call (k < S0, k < e), an up-and-out put (S0 < k, e < k), and a down-
and-out put (k < S0, k < e). With all these options you can compute the time 0 price
with a similar approach, that is, by deriving the joint probability distribution under the
martingale measure Q{ST = S0u j,τi = ∞}.

Paired with each of these four knockout options are options that become activated if
and only if the price level k is ever reached. For example, an up-and-in call (S0 < k,
e < k) expires worthless if the maximum price remains strictly less than k, whereas
the expiration value is (ST − e)+ if the maximum security price during [0,T ] is greater
than or equal to k. You also have down-and-in calls, up-and-in puts, and down-and-in
puts. All eight of these options are called barrier options. Again, you can compute
time 0 prices of these four ‘in’ options by deriving the joint probability distribution
Q{ST = S0u j,τi < ∞}. Or, if you already know the price of the paired knockout option,
then you can use the fact that the time 0 price of an ordinary call (or put) is equal to
the sum of the prices of the barrier options in a pairing. For example, the price of the
up-and-in call option with parameters k and e is equal to the price of the European call
option with exercise price e less the price of the up-and-out call option with parameters
k and e. This is because the expiration value of the call option is equal to the expiration
value of the up-and-in call plus the expiration value of the up-and-out call.

Exercise 4.5. Consider the European call option under the binomial model with T = 2,
e = 1000, u = 1.1, d = O.9, and r = 1/100. Compute the option price as a function of
the initial stock price S0 and draw a precise graph of this function.

Exercise 4.6. Suppose S0 = 80, T = 3, u = 1.5, d = 0.5, and r = 0.1 are the parameters
for the binomial model, and consider a call option with exercise price e = 80.

(a) Draw a lattice (i.e., recombining network) for the model and label the nodes with the
security’s price St .

(b) Compute q and q̃.

(c) Label each node with the corresponding option value.

(d) Determine the replicating portfolio.

Exercise 4.7. Suppose S0 = 36, T = 2, u = 1.5, d = 2/3, and r = 0 are the parameters
for the binomial model. Compute the prices of the following barrier options by deriving
the joint probability distribution Q{ST ,τ}, where τ is the first passage time to the barrier
k.

(a) Up-and-in call with k = 54 and e = 24.

(b) Up-and-out call with k = 54 and e = 24.

(c) Up-and-in put with k = 54 and e = 40.
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(d) Up-and-out put with k = 54 and e = 40.

(e) Down-and-in call with k = 24 and e = 30.

(f) Down-and-out call with k = 24 and e = 30.

(g) Down-and-in put with k = 24 and e = 54.

(h) Down-and-out put with k = 24 and e = 54.

4.3 American Options

With European options, that is, with contingent claims, the payoff X can only occur at a
specified date T , the expiration date. American options are similar, only now the payoff
can occur at any time τ on or before the specified expiration date T .

As with European options, you should think of an American option as a contract
between two parties, a buyer and a seller. Specified as data is a nonnegative, adapted
stochastic process Y = {Yt ; t = 0,1, . . . ,T}. If they make an agreement at time t, then at
that time the buyer pays the seller an amount Zt equal to the time t value of this option.
The buyer then has the right to exercise this option at any time τ , where t ≤ τ ≤ T . If the
option is exercised at time τ , then the seller pays Yτ to the buyer. An American option
can only be exercised once. If it is never exercised, then no payoff occurs. The key
problem, of course, is to determine the time t value Zt of this option, that is, the value
process Z = {Zt ; t = 0,1, . . . ,T} for this American option Y .

Example 4.8. Setting Yt = (Sn(t)− e)+ gives rise to an American call option with ex-
ercise price e. Hence the buyer has the right to purchase one unit of security n for the
amount e at any time on or before date T . Similarly, setting Yt = (e−Sn(t))+ leads to an
American put which gives the option buyer the right to sell one unit of the security on or
before time T for the price e.

If you buy an American option, then you can always postpone the exercise decision
until time T , so the value Zt of the American option Y is at least as large as the value Vt

of the European option that has payoff X = YT . In addition, the possibility of being able
to collect a desirable payoff at an earlier time tends to make American options more
valuable than their European counterparts. Surprisingly, however, there are important
situations where the two values coincide.

Consider an American option Y = {Yt ; t = 0,1, . . . ,T} and the correspond-
ing European option with time T payoff X = YT . Let Vt denote the time t
value of this European option. If Vt ≥ Yt for all t and ω ∈Ω, then, for all t,
Vt , is equal to Zt , the time t value of the American option, and it is optimal
to wait until time T to exercise.

(4.5)
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The reasoning is quite simple: if you bought the American option and Vt ≥ Yt , then
exercising at time t would be foolish, because you can always guarantee yourself a time
t payoff of Vt . For example, you could turn around and sell the corresponding European
option for Vt , or you could go short the portfolio which replicates the corresponding Eu-
ropean option. Since it is optimal to wait until time T to decide whether to exercise, the
values of the two options must be the same.

Example 4.1 (continued) Suppose Yt = (St − 5)+, where St is the price process in
example 4.1. Recall r = 0 and T = 2. The value process Vt for the corresponding Euro-
pean option X = max{0,S2− 5} was derived in section 4.1. Figure 4.2 displays on the
information tree for this model the price process, the value process V . and the payoff
process Y . Since Vt ≥ Yt for all t, V is equal to the value process Z for the American
option.

Figure 4.2: Values of American and European options are the same for example 4.1

Alternatively, suppose the American option’s payoff Y is as displayed in figure 4.3.
The time 2 payoffs are the same as in the figure 4.2 example, but now the time 0 and 1
payoffs Yt are greater (e.g., think of the American call option with e = 4, and suppose
the stock pays a $1 dividend between times 1 and 2). Hence the value process Vt for
the European option X = Y2 will be the same as in the figure 4.2 example, but now the
payoff process will not satisfy V ≥Y . In particular, Y1 > V1 when S1 = 8, and now there
is no reason to suppose the American option’s value is given by V . The value process Z
for this American option is displayed in figure 4.3 and will be derived later.

In order to evaluate American options, it is necessary to introduce a new kind of
stochastic process. The adapted stochastic process Z = {Zt ; t = 0,1, . . . ,T} is said to be
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Figure 4.3: Values of American and European options are different for example 4.1

a supertnartingale (see section 3.3) if

E[Zt |Fs]≤ Zs, all 0≤ s≤ t ≤ T

Thus a supermartingale resembles a martingale. except that the conditional expected fu-
ture value can be less than, instead of identical to, the current value. All martingales are
supermartingales, but not vice versa. We know that the discounted value of a European
option is a martingale under the risk neutral probability measure. It turns out that the
discounted value of an American option is a supermartingale under the same measure.

It is necessary to introduce a second topic from the theory of stochastic processes. A
stopping time is a random variable τ taking values in the set {0,1, . . . ,T,∞} such that
each event of the form {τ = t}, t ≤ T , is an element of the algebra Ft . Thus you can
evaluate whether the event {τ = t} occurs simply by examining Ft , the information
available at time t. For example, for a security with S0 = 10, τ1 ≡ min{t : St ≥ 20} is
a stopping time, because you learn the event {τ1 = t} by time t. However, the random
variable τ2≡max{t : St ≥ 20} is not a stopping time, because you may not learn whether
{τ2 = t} until time T . Stopping times are allowed to take a value such as ∞ in order to
provide for the possibility that the event of interest never occurs. For example, τ1 = ∞ if
the event {St ≥ 20} does not occur by time T .

There are many stopping times associated with our security model’s filtration. It is
convenient to classify these stopping times by letting ζ (s, t) denote the set of (random
variables which are) stopping times that take finite values in the closed interval [s, t].

The process Z in what follows will turn out to be the value process for the American
option Y .

Suppose there exists a risk neutral probability measure Q and define the
adapted stochastic process Z = {Zt ; t = 0, . . . ,T} by

(4.6)
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Zt = max
τ∈ζ (t,T )

EQ[YτBt/Bτ |Ft ]. (4.7)

Then the process Z/B is the smallest Q-supermartingale satisfying

Zt ≥ Yt , all t,ω. (4.8)

Moreover, the stopping time

τ(t)≡min{s≤ t : Zs = Ys} (4.9)

maximizes the right hand side of (4.7) for t = 0,1, . . . ,T .
In order to explain these principles, we will first describe a method for computing

the process Z, a topic of importance in its own right. The computations will be done
with dynamic programming, an algorithmic method of wide applicability. The idea in
the case of American options is to work backwards in time, computing as you go the
process Z. Note that (4.8) is clearly true for t = T , that is, ZT = YT . Moreover, (4.9)
holds for t = T .

Now the first iteration is to compute ZT−1 by taking

ZT−1 = max{YT−1,EQ[ZT BT−1/BT |FT−1]} (4.10)

noting for future reference that it will be optimal to take τ = T −1 if and only if ZT−1 =
YT−1. Now (4.7) can be rewritten for t = T −1 as

ZT−1 = max{YT−1,EQ[YT BT−1/BT |FT−1]}
so comparing this with (4.10) we realize that ZT−1 given by (4.10) satisfies (4.7) for
t = T − 1. Moreover, the stopping time that is spelled out in (4.9) for T − 1 is the one
which maximizes the right hand side of (4.7) for t = T −1.

Now suppose you have computed Zt and you know that this satisfies (4.7) and that
(4.9) for time t gives a stopping time which maximizes the right hand side of (4.7) for
time t. Then Zt−1, as given by

Zt−1 = max{Yt−1,EQ[ZtBt−1/Bt |Ft−1]} (4.11)

will satisfy (4.7) for t− 1. To see this, note that (4.7) holds for time t, so with Zt−1 as
has been computed we have

Zt−1 = max
{

Yt−1,EQ
[

max{EQ[YτBt/Bτ |Ft ]Bt−1/Bt |Ft−1}
]}

τ ∈ ζ (t,T )

≥max
{

Yt−1,EQ
[
EQ[YτBt/Bτ |Ft ]Bt−1/Bt |Ft−1

]}

= max
{

Yt−1,EQ
[
YτBt−1/Bτ |Ft−1

]} (4.12)

for all τ ∈ ζ (t,T ). Hence Zt−1 as has been computed is greater than or equal to the right
hand side of (4.7) for time t− 1. On the other hand, taking the stopping time in (4.9)
for time t− 1 we see that (4.12) becomes an equality. It follows that Zt−1 as has been
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computed satisfies (4.7) for time t and that the stopping time given by (4.9) for time t−1
is the one which maximizes the right hand side of (4.7) for time t−1.

Hence by a mathematical induction argument we have described an algorithm for
computing a process Z which satisfies (4.7). and we have verified that (4.9) gives the
stopping times which achieve the maximum on the right hand side of (4.7). This algo-
rithm is based on dynamic programming, which is simply the idea that if the optimal
exercise strategy starting at time t−1 calls for continuing at least one more period, then
next period you will use the optimal exercise strategy starting at time t.

Example 4.1 (continued) Starting with Z2 = Y2 we compute for states ω1 and ω2

EQ[Z2|F1] = EQ[Y2|F1] =
2
3
(4)+

1
3
(1) = 3

Hence Z1 = max{Y1,EQ[Z2|F1]} = max{4,3} = 4 in these same states. Similarly, in
states ω3 and ω4 we have EQ[Z2|F1] = 1/3 and Z1 = max{0,1/3}= 1/3.

For the next dynamic programming iteration, that is, for time 0, we have

EQ[Z1|F0] = EQZ1 =
1
4
(4)+

3
4
(1/3) = 1.25

in which case Z0 = max{Y0,EQZ1}= max{1,1.25}= 1.25. Note Z is displayed in figure
4.3.

Looking at (4.11) it is easy to see that Z ≥ Y and that Zt ≥ EQ[Zt+1Bt/Bt+1|Ft ] for
t = 0,1, . . . ,T −1. It follows from this inequality that Z/B is a Q-supermartingale. Note
that the value process Z = Z/B (recall B = 1) in figure 4.3 for example 4.1 is indeed a
Q-supermartingale.

Now suppose U is another process satisfying U ≥ Y and such that U/B is a Q-
supermartingale. Then

Ut−1 ≥max
{

Yt−1,EQ[UtBt−1/Bt |Ft−1]
}
, t = 1, . . . ,T (4.13)

In particular, UT ≥ YT = ZT , so taking (4.13) for t = T we realize from (4.11) that
Ut−1 ≥ Zt−1. We can repeat this argument, working backwards in time, until we even-
tually obtain the conclusion that U0 ≥ Z0. We thus conclude that Z/B is the smallest
Q-supermartingale such that Z ≥ Y . This completes the verification of principle (4.6).

Recall that the time t price of a European option X is given by EQ[XBt/BT |Ft ] pro-
vided X is marketable, whereas we are unable to pin down the price of X if it is not
marketable. A similar situation exists for American options. If an American option Y is
marketable (to be defined shortly), then its time t price is given by Zt , as developed in
(4.6). On the other hand, if Y is not marketable, then we are unable to specify its price.

The American option Y will be marketable or attainable if for each stopping time
τ ≤ T there exists a self-financing trading strategy such that the corresponding portfolio
value V satisfies Vτ =Yτ . In other words, Y will be marketable if one can replicate claims
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of the form Yτ , and the trading strategy that corresponds to Vτ =Yτ is called a replicating
or hedging trading strategy. This definition of marketability is stronger than necessary,
since we really only need to worry about stopping times of the form (4.9). However, the
approach taken here is simpler, and it is a property that can be checked without having
to first compute the American option’s value process Z.

Example 4.1 (continued) For the American option in figure 4.3 we will only check
the stopping times of the form (4.9), that is

τ(0) = τ(1) =

{
1, ω = ω1,ω2

2, ω = ω3,ω4

and τ(2)(ω) = 2, all ω ∈ Ω. Now Yτ(2) = Y2 is the same as the European call option X
that we have been studying; we know X is marketable, so there exists a trading strategy
such that Vτ(t) = Yτ(t) holds for t = 2.

For τ ≡ τ(0) = τ(1) we have

Yτ =





4, ω = ω1,ω2

1, ω = ω3

0, ω = ω4

To see if there is a trading strategy such that Vτ(t) = Yτ(t) is satisfied for t = 0 and 1, we
work backwards in time, trying to compute the requisite trading strategy, beginning with
the largest value of τ:

H0(2)+6H1(2) = Y2(ω3) = 1

H0(2)+3H1(2) = Y2(ω4) = 0

The solution exists and is H0(2) = −1 and H1(2) = 1/3 in states ω1 and ω2. Since the
trading strategy must be self-financing, this implies V1 = 1/3 in the same states.

The values of H0(2) and H1(2) for states ω3 and ω4 do not really matter, since τ = 1
in these states. All that remains is to see if there are values of H0(1) and H1(1) satisfying

H0(1)+8H1(1) = Y1(ω1) = Y1(ω2) = 4

H0(1)+4H1(1) = V1(ω3) = V1(ω4) = 1/3

The solution exists and is H0(1) = −10/3 and H1(1) = 11/12. Thus there exists a
trading strategy satisfying Vτ(t) = Yτ(t) for t equal to 0 and 1, in which case Y is a mar-
ketable American option. Notice that the time 0 value of the portfolio we just derived is
−10/3+5(11/12) = 5/4, which is the same as the value of Z0 for this American option
that was computed earlier.

Suppose there exists a risk neutral probability measure Q, the process Z is
as in (4.7), and the American option Y is marketable. Then Z is the value
or price process for Y , and the optimal early exercise strategy τ(0) is given
by (4.9).

(4.14)
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To see that Z is the price process for Y , one can use an arbitrage argument similar
to what was used for European options. Briefly, let p denote the time 0 price of Y , and
suppose p > Z0. Then one can sell the option for p dollars, undertake the trading strategy
that replicates Yτ(0) at a cost of Z0, and invest the difference p−Z0 in the bank account.
Later, if the buyer exercises the option at time t ≤ τ(0), you liquidate the portfolio,
collecting Zt dollars and paying the option buyer Yt . Since Zt ≥ Yt , these transactions
at the exercise time will only add to your profit, thereby guaranteeing yourself a strictly
positive profit overall.

On the other hand, suppose the option buyer does not exercise by time t = τ(0),
where τ(0) < T . Then you repeat this process, undertaking the trading strategy that
replicates Yτ(t) at a cost of EQ[Zt+1Bt/Bt+1|Ft ], which is less than or equal to Zt = Yt by
the dynamic programming relationship (4.11). As before, if the option buyer exercises at
some time s≤ τ(t), then the value of the portfolio will be enough to cover the payoff Ys.
If the buyer still has not exercised by time τ(t), then you repeat this process yet again,
and so forth. The bottom line: you will always have enough money in your portfolio to
cover the payoff, and your overall profit will be at least p−Z0 > 0.

For the opposite case, suppose the time 0 price of the option satisfies p < Z0. Then
you buy the option for p dollars, you undertake the negative of the replicating trading
strategy, thereby collecting Z0 dollars, and you invest the difference Z0− p in the bank
account. Later you exercise the option at time τ(0), and you liquidate the replicating
portfolio at the same time. Since Vτ(0) = Yτ(0), the amount you collect from the option
seller is exactly equal to your liability on the portfolio. Meanwhile, you have (Z0−
p)Bτ(0) > 0 dollars in the bank account.

Hence if p 6= Z0 there will exist an arbitrage opportunity, so Z0 must be the time 0
price of the American option Y . Moreover, an optimal exercise strategy for the option
buyer is given by (4.9), because any other strategy runs the risk of exercising when
Zt(ω) > Yt(ω), which means the option’s buyer would foolishly sacrifice the amount
Zt(ω)−Yt(ω) > 0. A similar argument will verify that Zt is the time t price of this
option and that (4.9) also gives the optimal exercise strategy starting at time t when
t > 0.

We now turn to a new question: under what circumstances should the buyer of an
American option never exercise early? Principle (4.5) gives one sufficient condition for
τ = T to be the optimal exercise strategy. An adapted stochastic process Z = {Zt ; t =
0,1, . . . ,T} is said to be a submartingale (see section 3.3) if

E[Zt |Fs]≥ Zs, all 0≤ s≤ t ≤ T,

that is, if −Z is a supermartingale. This definition permits one to state another sufficient
condition.
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If Y is a marketable American option and Y/B is a Q-submartingale, then
τ = T is always an optimal exercise strategy, and the price of this American
option coincides with the price of the European option X = YT .

(4.15)

To understand this, we need something called the optional sampling theorem, which
says that if Y/B is a Q-submartingale, then EQ[Yτ/Bτ ≤EQ[YT /BT ] for all stopping times
τ ≤ T . Hence by (4.7) with t = 0 we have Z0 = EQ[YT /BT ], which we recognize as the
price of the European option X = YT .

Principle (4.15) provides a condition that is sometimes convenient for checking whether
the American and European options’ values coincide For example, we have the follow-
ing.

In a world of non-negative interest rates and no dividends, an American
call option written on an individual risky security should not be exercised
early.

(4.16)

To see this it suffices to verify that (St−e)+/Bt =(St/Bt−e/Bt)+ is a Q-submartingale
by showing for arbitrary s, t ≥ 0 that

(St/Bt − e/Bt)+ ≤ EQ
[
(St+s/Bt+s− e/Bt+s)+|Ft

]

To begin with, we have

EQ
[
(St+s/Bt+s− e/Bt+s)+|Ft

]≥ EQ [(St+s/Bt+s− e/Bt+s)|Ft ]

= EQ [St+s/Bt+s|Ft ]− eEQ [1/Bt+s|Ft ]

= St/Bt − eEQ [1/Bt+s|Ft ]

where the last equality is because S/B is a Q-martingale. But Bt+s ≥ Bt , so 1/Bt ≥
1/Bt+s and thus

EQ
[
(St+s/Bt+s− e/Bt+s)+|Ft

]≥ St/Bt − eEQ [1/Bt |Ft ] = St/Bt − e/Bt

Finally, since EQ [(St+s/Bt+s− e/Bt+s)+|Ft ]≥ 0, it follows that EQ [(St+s/Bt+s− e/Bt+s)+|Ft ]≥
max{0,St/Bt − e/Bt}, which is exactly what we wanted to show.

It should be emphasized that a crucial part of this verification of (4.16) is the require-
ment that the discounted security price S/B is a Q-martingale. If the risky security pays
a dividend, then the discounted, ex-dividend price of this security is not necessarily a
Q-martingale, in which case the American call option based on the ex-dividend price
might be worth strictly more than the corresponding European option.

Exercise 4.8. For the model in example 4.1 with r = 0, what is the time 0 price of an
American put that has exercise price e = 6? Is it optimal to exercise early? If so, when?
And how do you hedge this option if you sell it at time 0?
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Exercise 4.9. Consider the binomial stock price model with T = 4, S0 = 20, u = 1.2214,
and d = 0.8187 = u−1. The interest rate is r = 3.82%. What is the time 0 price of an
American put that has exercise price e = 18? Is it optimal to exercise early? If so, when?

Exercise 4.10. Show that if M = {Mt ; t = 0, . . . ,T} is a supermartingale, then E[Mτ |Ft ]≤
Mt for all stopping times τ with t ≤ τ ≤ T .

Exercise 4.11. Suppose the American option Yt = g(St), where g is a convex function
with g(0) = 0. Let the interest rate be constant with r ≥ 0. Show that τ = T is an
optimal exercise strategy. (Hint: use (4.15) together with Jensen’s inequality, which
says that g(E[X |F ]) ≤ E[g(X)|F ] for any convex function g, any random variable X ,
and any algebra F .)

Exercise 4.12. Suppose b is a positive constant and the interest rates are non-negative.
Show that −b/Bt is a Q-submartingale. If M1(t), . . . ,MJ(t) are Q-submartingales and
m1, . . . ,mJ are positive scalars, then show m1M1 + · · ·+ mJMJ is a Q-submartingale.
Hence show for American options of the form

Yt = m0St +m1(St − e1)+ · · ·+mJ(St − eJ)−b

where m1 ≥ 0, . . . ,mJ ≥ 0, and b ≥ 0 (but m0 can be negative), that it is optimal to not
exercise early.

4.4 Complete and Incomplete Markets

In order to price a contingent claim X you need to worry about whether it is marketable,
that is, whether there exists a self-financing trading strategy such that VT = X . In this
regard, the situation is virtually the same as with single period models. This section will
explain how the single period results generalize to multiperiod models and give special
attention to the new issue of marketable American options. Throughout this section, of
course, it will be assumed that there exists a risk neutral probability measure Q.

The model is said to be complete if every contingent claim is marketable; otherwise,
the model is said to be incomplete. For single period models, we saw there were two
characterizations of completeness: either (1.22), the number of independent vectors in a
certain matrix, denoted A, equals the number of states, or (1.24), the risk neutral prob-
ability measure is unique. Both characterizations generalize to multiperiod models, as
can be seen by decomposing the multiperiod model into a network of single period mod-
els, as was done in section 3.3. In particular, think of the information tree corresponding
to the multiperiod model, with one underlying single period model at each node of this
network.

If the multiperiod model is complete, then for an arbitrary contingent claim X you
can always work backwards in time, as was explained in section 4.1, to compute the
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trading strategy that generates X . This means the matrix A for each underlying single
period model must have the requisite number of independent columns, or the computa-
tional procedure may fail. Thus every underlying single period model must be complete.
Conversely, if every underlying single period model is complete, then the computational
procedure for the multiperiod model will always succeed, and we have the following.

The multiperiod model is complete if and only if every underlying single
period model is complete.

(4.17)

In particular, the multiperiod model is complete if and only if the A-matrix corre-
sponding to every underlying single period model has the requisite number of inde-
pendent columns. Now this generalization of (1.22) is a rather ugly and impractical
characterization, so it will not be highlighted.

On the other hand, the generalization of (1.24) is rather nice. Every underlying single
period model is complete if and only if each underlying single period model has a unique
risk neutral ‘conditional’ probability measure. In view of the construction that was de-
veloped in section 3.3 of the risk neutral probability measure for the multiperiod model,
every underlying single period model has a unique risk neutral ‘conditional’ probability
measure if and only if the risk neutral probability measure for the multiperiod model is
unique. Hence we have the following.

The multiperiod model is complete if and only if the risk neutral probability
measure Q is unique.

(4.18)

Example 4.1 (continued) This model is complete, because the risk neutral probability
measure is unique.

Example 4.4 (continued) This model is complete, because the risk neutral probability
measure is unique.

Example 4.9 (continued) The binomial model studied in section 4.2 is complete, be-
cause the risk neutral probability measure is unique.

In an incomplete model, therefore, there will exist at least two, and thus many, risk
neutral probability measures. If X is an attainable contingent claim in an incomplete
model, then its time 0 price will equal V0 for the trading strategy which generates X .
Since V0 = EQ[X/BT ] for every risk neutral probability measure Q, we realize that for
marketable contingent claims the quantity EQ[X/BT ] is constant over the risk neutral
probability measures, that is, over all Q ∈M.

To show the converse, it suffices to suppose the contingent claim X is not attain-
able and then demonstrate that EQ[X/BT ] does not take the same value for all Q ∈M.
The argument will only be sketched. Again, think of the network of underlying single
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period models, and suppose you are trying to compute the replicating trading strategy
by working backwards in time. This procedure will break down at some single period
model. As seen in section 1.5, this means there will exist at least two sets of risk neu-
tral ‘conditional’ probabilities for this single period model giving different conditional
expectations to X/BT . It follows that there will exist at least two martingale measures Q
giving different values to EQ[X/BT ].

In summary, we have the following generalization of (1.23), true for both complete
and incomplete models.

The contingent claim X is attainable if and only if EQ[X/BT ] takes the same
value for every Q ∈M.

(4.19)

Turning to American options, fortunately there is the following.

If the model is complete, then every American option is marketable. (4.20)

To see this it suffices to take an arbitrary non-negative adapted process Y and an
arbitrary stopping time τ and show that there exists a self-financing trading strategy
such that Vτ = Yτ . To do this we use a trick: we consider a trading strategy, say Ĥ,
which starts at time τ with the Yτ dollars, all of which is put into and kept in the bank
account until time T . Under such a strategy there will be YτBT /Bτ dollars at time T .
Meanwhile, since the model is complete, we know there exists a trading strategy, say H,
which starts at time 0 and satisfies VT = YτBT /Bτ . Since the time T values of the two
portfolios are the same, we realize that the time τ values of the portfolios under H and
Ĥ must coincide, that is, Vτ = V̂τ = Yτ . Hence H is the strategy we were seeking.

If the market is incomplete, then an arbitrary American option may or may not be
marketable. In view of (4.19) and the preceding paragraph, we have the following.

The American option Y is attainable if and only if, for each stopping time
τ in (4.9), EQ[Yτ/Bτ ] takes the same value for all Q ∈M. (4.21)

Unfortunately, this condition is not so easy to check in particular cases.

Example 4.9. Suppose K = 5, N = 1, T = 2, r = 0, the filtration Ft is generated by the
price process S, and S is as shown:

ω S0 S1 S2 Q
ω1 5 8 9 q/4
ω2 5 8 7 (2−3q)/4
ω3 5 8 6 (2q−1)/4
ω4 5 4 6 1/4
ω5 5 4 3 1/2
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The martingale measure Q was computed and is displayed in this table; here q is any
scalar satisfying 1/2 < q < 2/3. This model is not complete, because the martingale
measure is not unique.

The contingent claim X is marketable if and only if

EqX = [qX1 +(2−3q)X2 +(2q−1)X3 +X4 +2X5]/4

= q[X1−3X2 +2X3]/4+X2/2−X3/4+X4/4+X5/2

is constant with respect to q, where here Xi denotes X(ωi). Hence the contingent claim
X is marketable if and only if

X1−3X2 +2X3 = 0

To check whether the American option Y is marketable, we certainly need to check
whether this equation is satisfied with X = Y2. In addition, we need to check whether,
for relevant stopping times τ , EqYτ is constant with respect to q. There are only two
stopping times of interest: either τa ≡ 1{S1=8}+2 ·1{S1=4} or τb ≡ 2 ·1{S1=8}+1{S1=4}.
Applying (4.21), we compute

EqYτa = Y1(ω1)/4+Y2(ω4)/4+Y2(ω5)/2

(recall Y is adapted, so Y1(ω1) = Y1(ω2) = Y1(ω3)). This is clearly constant with respect
to q. Similarly, we compute

EqYτb = Y2(ω1)q/4+Y2(ω2)(2−3q)/4+Y2(ω3)(2q−1)/4+3Y1(ω4)/4

=
q
4

[Y2(ω1)−3Y2(ω2)+2Y2(ω3)]+Y2(ω2)/2−Y2(ω3)/4+3Y1(ω4)/4

The condition that this be constant with respect to q leads to the same requirement as
before: the American option Y is marketable if and only if X1−3X2 +2X3 = 0 is satisfied
with X = Y2, that is, if and only if the European option X = Y2 is marketable.

Exercise 4.13. Consider the model in example 4.10. For what values of the exercise
price e is the call option marketable? For what values of e is the put option marketable?

4.5 Forward Prices and Cash Stream Valuation

Suppose you agree at time t to acquire a security at time τ , paying for it at time τ with
an amount you negotiated at time t. Or suppose you want to purchase a cash stream
of future receipts in exchange for your payment at time t. As will be discussed in this
section, the prices of these derivative securities can be evaluated with arbitrage pricing
theory.
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Actually, these derivative securities can only be evaluated if they can be replicated
with trading strategies, so for ease of exposition it will be assumed throughout this sec-
tion that the securities market model is complete.

First consider a cash stream which consists of ∆Ds dollars received at time s, where
t < s≤ T . This is just a time s contingent claim, so its time t value is EQ[∆DsBt/Bs|Ft ].
If ∆Ds is deterministic (or even is Ft measurable), then this simplifies to ∆DsEQ[Bt/Bs|Ft ].
If, in addition, the interest rate r ≥ 0 is constant, then this simplifies further to ∆Ds(1+
r)t−s. All these expressions are often called the time t present value of ∆Ds.

Next consider a cash stream ∆Dt+1, . . . ,∆Dτ , For example, these receipts may be the
dividends associated with one unit of a security S. In view of the preceding paragraph,
the time t present value of this cash stream is simply

τ

∑
s=t+1

EQ[∆DsBt/Bs|Ft ].

In the special case where this cash stream comes from the dividend process D associated
with the security S, it follows from (3.28) that the time t present value of this cash stream
is

St −EQ[SτBt/Bτ |Ft ].

These present value expressions are of fundamental importance in fmance, especially
when the interest rate is constant.

Sometimes two parties may each have a cash stream which, although featuring differ-
ent receipts at various future times, have identical time t present values. In such a case,
these two parties may find it advantageous to trade their cash streams. Such a transaction
is called a swap. Swaps are also made when the time t present values of the two cash
streams are different, simply by having one party pay the other at time t an amount equal
to the difference between the two time t present values.

Turning to the subject of forward prices, suppose at time t you agree to purchase one
unit of security S from a broker. No money or security units are exchanged at time t, but
the agreement you made at time t stipulates that at the future time τ , t < τ ≤ T , you will
receive one unit of security S and you will pay your broker Ot dollars (note: the notation
‘Ot’ comes from fOrward). The question is: is there a correct value for the forward
price Ot?

It should not come as a surprise to learn that the answer to this question is yes. The
idea is to realize that holding the forward agreement plus Ot dollars at time τ is equiva-
lent to holding one unit of security S at the same time. To be specific, in the first strategy
you enter the forward agreement at time t, at the same time you replicate the contingent
claim which pays Ot dollars at time τ , and at time τ you fulfill the forward agreement by
paying Ot dollars and receiving the security. The time t cost of replicating Ot is simply
the present value of Ot , that is,

EQ[OtBt/Bτ |Ft ] = OtEQ[Bt/Bτ |Ft ].
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The second strategy is worth Sτ at time τ , and its time t present value is simply St (by
the definition of the martingale measure Q). But the first strategy is also worth Sτ at time
τ , so by the law of one price the time t values of the two strategies must be equal, that
is, St = OtEQ[Bt/Bτ |Ft ]. In other words, we have the following.

The time t forward price Ot of security S, which is received and paid for at
time τ > t and which pays no dividends, is

Ot =
St

EQ[Bt/Bτ |Ft ]

(4.22)

It is worth pointing out that this expression for the forward price is not necessarily
true if the security S pays dividends. This is because (4.22) was derived by assuming
S/B is a Q-martingale, an assumption that is false when the security pays a dividend.
However, principle (4.22) can easily be generalized to the case of a dividend-paying
security.

To derive a generalization, we need to concoct and then price the trading strategy
which replicates the time τ contingent claim equal to Sτ . Here it is:

• At time t purchase one unit of the security by paying St .

• At time t borrow EQ[∆Dt+1Bt/Bt+1|Ft ] dollars by undertaking the negative of the
trading strategy that replicates the time t +1 receipt ∆Dt+1. Then at time t +1 use
the dividend payment ∆Dt+1 to settle the liability under this strategy.

...

• At time t borrow EQ[∆DτBt/Bτ |Ft ] dollars by undertaking the negative of the trad-
ing strategy that replicates the time τ receipt ∆Dτ . Then at time τ use the dividend
payment ∆Dτ to settle the liability under this strategy.

The time t value of this replicating portfolio must be

St −
τ

∑
s=t+1

EQ[∆DsBt/Bs|Ft ]

Equating this with the time t present value of the time τ receipt Ot , we obtain the fol-
lowing conclusion.

The time t forward price Ot of security S, which is received and paid for at
time τ > t, and which has the dividend process D, is

Ot =
St

EQ[Bt/Bτ |Ft ]
−

τ

∑
s=t+1

EQ[∆DsBt/Bs|Ft ]
EQ[Bt/Bτ |Ft ]

(4.23)

Sometimes forward prices are associated with assets which cannot be classified as
securities because it is impossible to sell them short. For example, most agricultural
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commodities, such as live hogs, bushels of corn, and bales of cotton, cannot be sold
short, perhaps because there is no market to borrow these physical goods from the farm-
ers. Consequently, the usual arbitrage arguments break down, and one cannot be sure
whether the discounted cash (or spot) prices of these assets are martingales under any
probability measure.

For many such assets it is perfectly feasible to purchase them, provided you are will-
ing to pay a carrying cost of c dollars per unit per period (perhaps this is an inventory
storage charge). This is like a security that pays a dividend, only the dividend process
satisfies ∆Dt =−c for all t.

Let At denote the time t cash price of this asset, t = 0,1, . . . ,T . An arbitrage opportu-
nity associated with this asset can be defined just as with a security, except that one must
add the stipulation that the position H1 in this asset must be non-negative. Recalling
the economic principles associated with ordinary securities, we realize that an arbitrage
opportunity will exist with this asset if we can find some time t and some event E ∈Ft

such that
At(ω)/Bt(ω)≤ (

At+1(ω)− c
)
/Bt+1(ω), all ω ∈ E

with this inequality being strict for at least one ω ∈ E. If event E occurs, then we buy
the asset with money borrowed from the bank, and next period we cash out with a net
profit that is non-negative in all ω ∈ E and strictly positive for at least one such ω . It
follows that if there exists a strictly positive probability measure Q such that

At/Bt ≥ EQ[(At+1− c)/Bt+1|Ft ], t = 0,1, . . . ,T −1. (4.24)

then this kind of arbitrage opportunity cannot arise.
On the other hand, there is no economic mechanism to prevent inequality (4.24) from

being strict for some ω and some t. If this asset A = {At ; t = 0,1, . . . ,T} is actually
a security, then a strict inequality by every strictly positive probability measure would
signal an arbitrage opportunity, with the associated trading strategy entailing a short
position in the security. But for our asset which cannot be sold short, a strict inequality
in (4.24) is of no consequence, because a trading strategy involving a short position
is inadmissible and thus not an arbitrage opportunity. Hence I have sketched out an
explanation of the following.

If the market model includes an asset with cash price A = {At ; t =
0,1, . . . ,T} which cannot be sold short and which has carrying cost c per
unit per period, then there are no arbitrage opportunities if and only if there
exists a strictly positive probability measure Q such that all the discounted
securities are Q-martingales and such that (4.24) is satisfied.

(4.25)

Now suppose there is a forward price Ot for this asset A, based upon payment at time
τ . If this asset is actually a security, then by (4.23) we would have

Ot =
At

EQ[Bt/Bτ |Ft ]
+ c

τ

∑
s=t+1

EQ[Bt/Bs|Ft ]
EQ[Bt/Bτ |Ft ]

(4.26)
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However, if this asset cannot be sold short, then the law of one price does not hold. In
particular, if the forward price Ot is strictly less than the right hand side of (4.26), then
it would be desirable to buy the asset for time τ delivery at the forward price Ot while
simultaneously following the negative of the trading strategy that replicates Aτ . But this
cannot be done, because it is not possible to sell this asset short. There is no economic
mechanism to prevent the forward price Ot from being strictly less than the right hand
side of (4.26).

On the other hand, if the forward price Ot is strictly greater than the right hand side
of (4.26), then it would be desirable to sell the asset for time τ delivery at the forward
price Ot while simultaneously following the trading strategy that replicates Aτ . This can
be done, so this is an arbitrage opportunity. This can be summarized as follows.

Suppose there is an asset with cash price A = {At ; t = 0,1, . . . ,T} which
cannot be sold short and which has carrying cost c per unit per period. The
time t forward price Ot of this asset, which is received and paid for at time
τ > t, satisfies

Ot ≤ At

EQ[Bt/Bτ |Ft ]
+ c

τ

∑
s=t+1

EQ[Bt/Bs|Ft ]
EQ[Bt/Bτ |Ft ]

(4.27)

Exercise 4.14. Consider a two-period model with Ω = {ω1, . . . ,ω4} and an asset with
time 0 price A0 = 100.

(a) If the bank account process is deterministic according to Bt = (1.05)t for t = 0,1,2
and if the asset can be sold short, then what is the time 0 forward price O0 of the
asset for delivery at time 2?

(b) If the bank account process is random with B1 = (1.05), B2(ω1) = B2(ω2) = 1.12
and B2(ω3) = B2(ω4) = 1.10 and if the asset can be sold short, then what is the time
0 forward price O0 for time 2 delivery of the asset? Provide an expression in terms
of Q({ω1,ω2}).

(c) If the bank account process is random as in part (b) and if the asset cannot be sold
short, then what is the largest value for the time 0 price O0 of the asset for time 2
delivery that is consistent with no-arbitrage?

(d) Same as part (c), only now the asset has a carrying cost of $5 per period.

4.6 Futures

Futures prices closely resemble forward prices in that they both are based on the cash
price of a security or asset at a fixed, future point in time. In particular, at time τ both
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the forward and futures prices for time τ delivery will equal the underlying cash price.
However, there are subtle differences which can cause the two prices to be different.

Futures prices are associated with futures contracts which are traded on organized
exchanges. For example, a speculator can purchase a contract for the delivery of 5000
bushels of wheat in July. The price is established at the time of the transaction, and then,
as additional transactions occur between other buyers and sellers, the value of the spec-
ulator’s purchased contract will fluctuate in accordance with the ensueing transaction
prices. Moreover, the speculator can close out the position at any time before delivery
by doing a reverse transaction at the exchange, thereby yielding a net profit based on the
difference between the futures prices at the two transaction times. Hence, in the case of
futures contracts, there may be arbitrage opportunities which can be ‘cashed out’ well
before the scheduled delivery time.

In contrast, positions in forward contracts must be held until the time of actual de-
livery. This is because forward contracts are made between two specific individuals or
parties, and the position held by one of these parties cannot be closed out before the de-
livery time by selling the position to a third party. Hence the only arbitrage opportunities
that can be present are ones which, once a forward position is established, are held in
constant fashion until the delivery time.

Just as with forwards, for every buyer of a futures contract there is a seller, that is, an
individual who ‘promises to deliver a specified quantity of the asset at a specified future
point in time.’ This phrase is in quotes, because usually the seller will close out his or
her position before the delivery time, and some futures contracts are simply tied to the
underlying cash price at the ‘delivery’ time, with no possibility for an actual delivery to
occur.

An important feature of futures contracts is that buyers and sellers must deposit mar-
gin or collateral with the exchange. This is to make sure the buyer or seller does not walk
away from a losing position. The amount of funds in the trader’s margin account will
fluctuate continuously in accordance with the fluctuations of subsequent futures prices.
For example, if the futures price of a 5000 bushel July wheat contract goes down ten
cents a bushel, then a buyer of this contract will have $500 removed from his or her
margin account. In this fashion, cumulative net profits from futures transactions are
continuously reflected until the positions are closed out.

Futures traders cannot borrow money and then put the resulting funds in their margin
account in order to trade futures contracts. And the exchange will either ask for more
funds or close out the trader’s futures positions if the margin account becomes depleted.
Hence futures traders always have positive wealth, and individuals with zero or negative
wealth cannot trade futures contracts.

Futures traders may use securities as collateral in the margin account. For example, a
trader could pledge funds earning interest in a bank account. Hence an individual with
a security portfolio that has positive wealth can trade futures simply by using part or
all of this portfolio as collateral for the margin requirement. This trader is thereby able
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to trade futures contracts without using any extra funds that are dedicated to the futures
contracts. To buy a security you must come up with some cash, but you can buy a futures
contract for free!

In order to make these ideas more precise and to see their consequences, we take
our usual securities market model and superimpose one or more futures price processes.
Let Ut (or U j(t), j = 1, . . . ,J) denote (the notation ‘U’ comes from fUtures) the time t
futures price for a security or asset that is delivered at time τ ≤ T (or τ j, respectively).
It may be appropriate to stipulate UJ(τ j) = S j(τ j) for j = 1, . . . ,J, but in some cases the
futures market model may contain one or more futures price processes that are not tied
to specific securities in this manner. For example, the securities could be stocks and Ut

could be the futures price of May corn.
In addition to the usual strategies for trading the securities, let the predictable process

Ĥt (or Ĥ j(t)) represent the position in the futures contract U (or U j, respectively) held
from time t−1 to time t. Naturally, if the futures contract U j expires at time τ j < T , then
Ĥ j(t) = 0 is required for all t > τ j. The overall trading strategy will be a predictable,
vector-valued process of the form (H, Ĥ) = (H0,H1, . . . ,HN, Ĥ1, . . . , ĤJ).

At time t, just after any time t transactions, the value of a portfolio is the same as
before when there are no futures contracts, namely,

H0(t +1)Bt +
N

∑
n=1

Hn(t +1)Sn(t)

However, the portfolio’s value Vt just before any time t transactions will be different, for
it will equal the money in the bank account and the securities (as with no futures) plus
the net profit over the last period due to the futures trades. In other words,

Vt = H0(t)Bt +
N

∑
n=1

Hn(t)Sn(t)+
J

∑
j=1

Ĥ j(t)∆U j(t), t > 0

We let

V0 = H0(1)B0 +
N

∑
n=1

Hn(1)Sn(0)

denote the usual time 0 value of the portfolio.
A trading strategy (H, Ĥ) in our futures market model will be called self-financing

if no money is consumed or added to the portfolio from an exogenous source between
times 0 and T , that is, if

Vt = H0(t +1)Bt +
N

∑
n=1

Hn(t +1)Sn(t), t = 1, . . . ,T −1

Our aim is to derive an explicit relationship for the futures price in terms of its under-
lying security. We can do this if it is assumed there are no arbitrage opportunities. Since
futures traders must have positive wealth, we cannot proceed as with ordinary securities
market models and define an arbitrage opportunity as a trading strategy that starts with



4.6. FUTURES 137

V0 = 0. But the idea will be the same; we will just shift the starting point to a positive
level of initial wealth. A self-financing trading strategy in our futures market model will
be called an arbitrage opportunity if

(a) VT (ω)≥V0BT (ω), all ω

(b) VT (ω) > V0BT (ω), some ω

Thus an arbitrage opportunity will do no worse than putting all your money in the bank
account, and there is the possibility that it will do strictly better.

Just as for ordinary securities market models, we can decompose the multiperiod
futures market model into a network of single period models, with one single period
model corresponding to each node in the information tree submodel of the filtration. It
follows that an arbitrage opportunity will exist for the multiperiod model if and only
if there exists an arbitrage opportunity for one or more of the underlying single period
models. Hence we can learn about multiperiod futures markets by first studying single
period futures markets.

We begin by comparing V1 with V0(B1/B0):

V1 ≥V0(B1/B0)⇐⇒ H0(1)B1 +
N

∑
n=1

Hn(1)Sn(1)+
J

∑
j=1

Ĥ j(1)∆U j(1)

≥
[

H0(1)B0 +
N

∑
n=1

Hn(1)Sn(0)

]
(B1/B0)

⇐⇒
N

∑
n=1

Hn(1)Sn(1)+
J

∑
j=1

Ĥ j(1)∆U j(1)≥ B1

N

∑
n=1

Hn(1)Sn(0)/B0

⇐⇒
N

∑
n=1

Hn(1)S∗n(1)+
J

∑
j=1

Ĥ j(1)∆U j(1)/B1 ≥
N

∑
n=1

Hn(1)S∗n(0)

⇐⇒
N

∑
n=1

Hn(1)∆S∗n(1)+
J

∑
j=1

Ĥ j(1)∆U j(1)/B1 ≥ 0 (4.28)

Note the first inequality is strict for one or more states ω if and only if inequality (4.28)
is strict. Thus (H, Ĥ) is an arbitrage opportunity for this single period model if and only
if (4.28) holds, with the inequality being strict for one or more ω ∈Ω.

Looking at (4.28) we see that the quantity ∆U j(1)/B1 plays the same kind of role as
the quantity ∆S∗n(1). Knowing what we do for conventional single period models, we
conclude the following.

There are no arbitrage opportunities in the single period futures mar-
ket model if and only if there exists a strictly positive probability mea-
sure Q such that S∗n(0) = EQ[S∗n(1)], n = 1, . . . ,N and that U j(0) =
EQ[U j(1)/B1]/EQ[1/B1], j = 1, . . . ,J. If the interest rate r = (B1−B0)/B0

is constant, then this last equation simplifies to U j(0) = EQU j(1).

(4.29)
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Now (4.29) can be viewed as a requirement for the risk neutral probability measure.
Given the bank account, security, and futures prices, it gives the requirement which
Q must satisfy for there to be no arbitrage opportunities. Notice the requirement that
U j(τ j) = S j(τ j) for some time τ j was not used; we only used the futures exchange’s
trading rules. Hence (4.29) can be applied to situations where expiration times τ exceed
one (or even to situations where a futures price is based on an asset that is not a security
or on a security that is not part of the securities model).

Alternatively, one could start with an arbitrage free securities market model and wish
to add futures prices based on these securities. In the case of the single period model,
one would know Q (this comes from the original securities market model) and the fact
that U j(1) = S j(1), and so one would use (4.29) and the fact that S j(0) = EQ[S j(1)/B1]
to conclude

U j(0) =
S j(0)

EQ[1/B1]
(4.30)

Example 4.10. Consider the single period model with N = 1, K = 2, S0 = 5, S1(ω1) =
U1(ω1) = 8, S1(ω2) = U1(ω2) = 4, and the interest rate constant with 0≤ r < 3/5. The
risk neutral probability measure is computed from EQ[∆S∗] = 0 to be Q(ω1) = (1+5r)/4
and Q(ω2) = (3− 5r)/4. Hence by (4.29) the futures market model is arbitrage free if
and only if U0 = EQ[S1] = 5(1 + r) = 5B1. Of course, this is the same as (4.30) and is
consistent with the fact that

V1 = H0B1 +H1S1 + Ĥ∆U = (V0−5H1)B1 +H1S1 + Ĥ∆U

=

{
V0B1(ω1)+H1

(
8−5B1(ω1)

)
+ Ĥ∆U(ω1), ω = ω1

V0B1(ω2)+H1
(
4−5B1(ω2)

)
+ Ĥ∆U(ω2), ω = ω2

=

{
V0(1+ r)+H1(3−5r)+ Ĥ(3−5r), ω = ω1

V0(1+ r)+H1(−1−5r)+ Ĥ(−1−5r), ω = ω2

(4.31)

The point here is that with U0 = 5(1 + r) there is no way to choose H1 and Ĥ so as to
make V1 ≥ V0(1 + r) and V1 6= V0(1 + r). On the other hand, with U0 taking any other
value, the vector ∆U will not be a scalar multiple of the vector S1− S0B1, and one can
choose H1 and Ĥ so as to be an arbitrage opportunity.

More generally, if U1 is arbitrary instead of being equal to S1, then (4.29) implies
U0 = U1(ω1)(1 + 5r)/4 +U1(ω2)(3− 5r)/4. A little algebra verifies that the vector
∆U1 is a scalar multiple of the vector S1−S0B1, which is consistent with no arbitrage.

Now return to the case where U1 = S1 and suppose the interest rate r is random. The
formula U0 = EQ[S1] in (4.29) will not apply, and instead we must use the more general
U0 = EQ[S1/B1]/EQ[1/B1] or (4.30). For example, with r(ω1) = 1/16 and r(ω2) = 1/8,
the risk neutral probability measure is computed to be Q(ω1) = 221/608 and Q(ω2) =
387/608. It follows from (4.30) that U0 = 5 35/69, which is different than EQS1 =
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5 69/152. With U0 = 5 35/69 one has ∆U(ω1) = 172/69 and ∆U(ω2) = −104/69, so
the first part of (4.31) implies

V1 =





17
16

V0 +
43
16

H1 +
172
69

Ĥ, ω = ω1

9
8

V0− 26
16

H1− 104
69

Ĥ, ω = ω2

Some more algebra verifies that the vector ∆U is a scalar multiple of S1−S0B1, so there
is no way of choosing H1 and Ĥ so as to be an arbitrage opportunity. Similar results hold
when B1 is random and U1 6= S1.

In the preceding example, when U1 = S1 the futures price U0 came out equal to the
forward price O0 = S0/EQ[1/B1]. Looking at (4.30) one sees that this will hold in all
single period models, even if B1 is random, when U1 = S1. This is not surprising, since in
a single period model the trading strategies available for replicating mispriced forwards
and futures are identical. But in a multiperiod setting only ‘buy-and-hold’ and ‘short-
and-hold’ strategies can be used to replicate mispriced forwards, and so, as we shall see,
the futures and forward prices can be different.

We are now ready to analyze the multiperiod futures market model. Consider the
single period model associated with an arbitrary time t and event A in Pt , the cell in
the partition corresponding to Ft . As stated earlier, the multiperiod futures market
model has no arbitrage opportunities if and only if none of the underlying single pe-
riod models has any arbitrage opportunities. Our arbitrary single period model has an
arbitrage opportunity if and only if trading positions can be taken at time t such that
Vt+11A ≥ 1AVtBt+1/Bt , with this inequality being strict for at least one ω ∈ A. Proceed-
ing in an analogous fashion through the implications that led to (4.28), we see that the
single period model has an arbitrage opportunity if and only if

N

∑
n=1

Hn(t +1)∆S∗n(t +1)+
J

∑
j=1

Ĥ j(t +1)∆U j(t +1)/Bt+1 ≥ 0, all ω ∈ A

with this inequality being strict for at least one ω ∈ A. It follows as in (4.29) that this
single period model has no arbitrage opportunities if and only if there is a conditional
risk neutral probability measure Q(t,A) > 0 such that EQ(t,A)[∆S∗n(t + 1)] = 0 for all
n and EQ(t,A)[∆U j(t + 1)/Bt+1] = 0 for all j. Finally, and just as with conventional,
multiperiod securities markets models (see section 3.4), we can paste all the single period
models together and conclude that the multiperiod futures market model has no arbitrage
opportunities if and only if there exists a strictly positive probability measure Q such that
each S∗ is a Q-martingale and

EQ[∆U j(t +1)/Bt+1|Ft ] = 0, all t ≥ 0 and j = 1, . . . ,J (4.32)

There is just one problem: condition (4.32) is rather distasteful, being unattractive and
somewhat difficult to work with. It turns out that little will be lost and considerable sim-
plification will be gained if it is assumed that the bank account process B is predictable
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(in the single period model, this is the same as requiring B1 to be a constant), for then
(4.32) reduces to the much nicer requirement that each (undiscounted) futures process is
a martingale under Q. This is the approach we will take; the results are summarized in
the following.

Suppose the bank account process is predictable. Then there are no ar-
bitrage opportunities in the multiperiod futures market model if and only
if there exists a strictly positive probability measure Q such that each S∗n,
n = 1, . . . ,N, and each U j, j = 1, . . . ,J, is a martingale under Q.

(4.33)

Now suppose U is the price of a futures contract based on the delivery of security S at
time τ , so Uτ = Sτ . Then (4.33) implies Ut = EQ[Sτ |Ft ] for all t = 0, . . . ,τ . Meanwhile,
consider the forward price Ot for delivery of the same security S at the same time τ . If
this security pays no dividend, then (4.22) says

Ot =
St

EQ[Bt/Bτ |Ft ]
=

EQ[Sτ/Bt |Ft ]
EQ[Bt/Bτ |Ft ]

=
EQ[Sτ/Bτ |Ft ]
EQ[1/Bτ |Ft ]

Comparing this with Ut = EQ[Sτ |Ft ], we realize the following.

When the bank account process B is deterministic, the forward and futures
prices for time τ delivery of the same security coincide, whereas if B is
random (and predictable), then these forward and futures price processes
can be different.

(4.34)

This same conclusion holds when the underlying security pays a dividend, as can be
verified by using (4.23) and (3.28).

Example 4.1 (continued) Suppose B1 = 1 and

B2(ω) =

{
17/16, ω = ω1,ω2

9/8, ω = ω3,ω4

The unique probability measure such that S∗ is a martingale is easily computed to be
Q(ω1) = 5/24, Q(ω2) = 1/24, and Q(ω3) = Q(ω4) = 3/8. Hence for the futures price
process U satisfying U2 = S2 one has U0 = EQ[S2] = 51

2 and

U1 = EQ[S2|F1] =

{
81

2 , ω = ω1,ω2

41
2 , ω = ω3,ω4

Meanwhile, the time 0 forward price for time 2 delivery of this security is given by
O0 = S0/EQ[1/B2] = 5/(46/51) = 525/46.

Now turn to the topic of options on futures. For example, suppose contingent claim X
is defined by X = g(Us) for some expiration date s satisfying 0 < s < τ . More generally,
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X is an Fs measurable random variable with s smaller than all the delivery times of the
various futures contracts associated with the model. The objectives are to determine the
price of this European option and to derive a trading strategy which replicates this option,
that is, a self-financing trading strategy (H, Ĥ) satisfying Vt = X , where, as above,

Vt = H0(t)Bt +
N

∑
n=1

Hn(t)Sn(t)+
J

∑
j=1

Ĥ j(t)∆U j(t), t > 0

As usual, an option X will be called attainable or marketable if it can be replicated. And
if X can be replicated by the trading strategy (H, Ĥ), then the corresponding portfolio
value Vt must be the time t price of X for all t ≤ s.

In order to obtain nice results, from now on it will be assumed that the bank account
process B is predictable and that there exists a risk neutral probability measure Q for this
futures market model. It follows from this assumption and (4.33) that:

The discounted value process V ∗ ≡V/B is a Q-martingale. (4.35)

Now X is attainable if and only if X/Bs = V ∗
s for some self-financing trading strategy,

so just as with ordinary security market models (4.35) implies

If X ∈ Fs is an attainable contingent claim in the futures market model,
then its time t price is Vt = EQ[XBt/Bs|Ft ] for all t ≤ s.

(4.36)

It is worth pointing out that results like (4.35) and (4.36) hold even if the bank account
process B is not predictable, but you must be careful what you mean by the risk neutral
probability measure in such a case.

This valuation formula for options on futures looks exactly the same as ordinary
European options on securities, but there is a subtle difference. In practical applications
it is common to work with a model consisting of the bank account and just one risky price
process (chosen to be, of course, the price underlying the option). If this underlying risky
price is a security, then the martingale measure Q will be such that the discounted risky
price process is a martingale. On the other hand, if the underlying risky price is a futures
price, then the martingale measure Q must be such that the undiscounted risky price
process is a martingale. Thus starting with the same model for the risky price process,
you can get two different prices for the same option on this price process, depending on
whether it is a security or a futures price.

Example 4.11. Consider a futures market model that consists of a single risky security,
namely, a futures price process U that is governed by the binomial model of section 3.5.
In particular, for parameters 0 < d < 1 < u and 0 < p < 1 and initial price U0,

Ut = U0uNt dt−Nt t = 0,1, . . .

where N is a binomial process with parameter p. As usual, the interest rate r ≥ 0 is
constant.
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The risk neutral probability measure is easy to obtain. We want U to be a martingale,
so this is simply the same as before, only with the interest rate r = 0. In particular, the
probability q of an ‘up’ move should be taken to be

q =
1−d
u−d

Everything else should be the same as before, even if the true interest rate r is strictly
positive. In particular, formula (3.32) still holds for the probability distribution of Ut ,
except that we now use the new value of q.

Now consider the European call option X = (Us− e)+. To compute its time 0 price
we proceed in exactly the same way as in section 4.2, only using the new value of q. In
particular, we define n̂ to be the smallest non-negative integer n such that

n >
log

(
e/(U0ds)

)

log(u/d)

If n̂ > s, then U0 is so far out of the money that there is no chance of finishing in the
money (that is, with Us > e)), in which case the time 0 price of the option is V0 = 0. On
the other hand, if n̂≤ s, then

V0 = U0

s

∑
n=n̂

(
s
n

)
q̂n(1− q̂)s−n− e

(1+ r)s

s

∑
n=n̂

(
s
n

)
qn(1−q)s−n

where q = (1−d)/(u−d) and q̂ = qu/(1+r) = (1−d)u/[(u−d)(1+r)]. This formula
has exactly the same form as for a call option on a security, only now q 6= (1 + r−
d)/(u−d).

Exercise 4.15. Verify that (4.34) holds when the underlying security pays a dividend.



Chapter 5

Optimal Consumption and Investment
Problems

5.1 Optimal Portfolios and Dynamic Programming

The purpose of this chapter is to study the multiperiod generalizations of the single
period consumption and investment problems that were introduced in chapter 2. I begin
by investigating the basic optimal portfolio problem, where the objective is to maximize
the expected utility of time T wealth and where there is no consumption before time T .

A utility function u : R×Ω → R is specified, with u(w,ω) representing the utility
of wealth w at time T when ω ∈ Ω is the state of the world. It will be assumed that
w→ u(w,ω) is differentiable, concave, and strictly increasing for each ω ∈Ω. Usually
u will be independent of ω .

An initial wealth v is specified. The investor can choose any self-financing trading
strategy H consistent with this initial wealth. The measure of performance of any such
H will be the expected utility of terminal wealth, that is,

Eu(VT ) = ∑
ω∈Ω

P(ω)u
(
VT (ω),ω

)

The investor is therefore interested in solving the following optimal portfolio problem:

maximize Eu(VT )

subject to V0 = v

H ∈H
(5.1)

where H denotes the set of all self-financing trading strategies.
Keeping in mind that trading strategies must be predictable, we see that (5.1) actually

involves three kinds of constraints. But two of these three kinds can easily be set aside.
Since VT = BTV ∗

T and V ∗
T = V ∗

0 +G∗
T , it follows that (5.1) is equivalent to

maximize Eu
(
BT{v+G∗

T}
)

subject to (H1, . . . ,HN) ∈Hp
(5.2)

143
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where hp denotes the set of all predictable processes that take values in RN . Thus if
(Ĥ1, . . . , ĤN) is a solution of (5.2), then it is a simple matter to choose Ĥ0 so that Ĥ =
(Ĥ0, Ĥ1, . . . , ĤN) is self-financing and V0 = v, thereby giving an optimal solution of (5.1).

Problem (5.2) can be solved with several approaches. One is to use standard calculus
and optimization theory, keeping in mind the predictability constraint.

Example 5.1. Suppose T = 2, K = 4, N = 1, the interest rate r is a constant satisfying
0 ≤ r < 0.125, the filtration is the one generated by the risky security, and the price
process for the risky security and the probability measure are as follows:

ω S0(ω) S1(ω) S2(ω) P(ω)
ω1 5 8 9 1/4
ω2 5 8 6 1/4
ω3 5 4 6 1/4
ω4 5 4 3 1/4

In addition, suppose the investor has an exponential utility function: u(w)= 1−exp{−w}.
In view of the predictability requirement, the strategy H1 for trading the risky security
entails the specification of three scalar values: the position. denoted H5, carried forward
from time 0 when the price S0 = 5, the position, denoted H8, carried forward from time
1 when the price S1 = 8, and the position, denoted H4, carried forward from time 1 when
the price S1 = 4. Hence the objective function in (5.2) can be written as

Eu
(
B2{v+G∗

2}
)

= 1−E exp
{− (1+ r)2[v+H1(1)∆S∗1 +H1(2)∆S∗2]

}

= 1− 1
4

(
exp

{
−(1+ r)2

[
v+H5 3−5r

1+ r
+H8 1−8r

(1+ r)2

]}

+ exp
{
−(1+ r)2

[
v+H5 3−5r

1+ r
+H8−2−8r

(1+ r)2

]}

+ exp
{
−(1+ r)2

[
v+H5−1−5r

1+ r
+H4 2−4r

(1+ r)2

]}

+ exp
{
−(1+ r)2

[
v+H5−1−5r

1+ r
+H4−1−4r

(1+ r)2

]}}

Setting the partial derivative with respect to each of the three variables equal to zero
leads to the following three equations:

exp
{
−(1+ r)2

[
v+H5 3−5r

1+ r
+H8 1−8r

(1+ r)2

]}

=
2+8r
1−8r

exp
{
−(1+ r)2

[
v+H5 3−5r

1+ r
+H8−2−8r

(1+ r)2

]}

exp
{
−(1+ r)2

[
v+H5−1−5r

1+ r
+H4 2−4r

(1+ r)2

]}

=
(3−5r)(1+4r)
(1+5r)(1−8r)

exp
{
−(1+ r)2

[
v+H5 3−5r

1+ r
+H8−2−8r

(1+ r)2

]}

(5.3)
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exp
{
−(1+ r)2

[
v+H5−1−5r

1+ r
+H4−1−4r

(1+ r)2

]}

=
(3−5r)(2−4r)
(1+5r)(1−8r)

exp
{
−(1+ r)2

[
v+H5 3−5r

1+ r
+H8−2−8r

(1+ r)2

]}

Taking logs, one obtains a system of three linear equations; from this the final solution
is easily obtained:

H5 =
3ln(3−5r)+(2−4r) ln(2−4r)+(1+4r) ln(1+4r)

12(1+ r)

=
3ln(1+5r)+(2+8r) ln(2+8r)+(1−8r) ln(1−8r)

12(1+ r)

H8 =−1
3

ln
(

2+8r
1−8r

)
H4 =

1
3

ln
(

2−4r
1+4r

)

It remains to compute H0, the strategy for trading the bank account. Clearly H0(1) = v−
5H5. In states ω1 and ω2 the value of the portfolio will be V1 = (v−5H5)(1+ r)+8H5,
so setting this equal to H0(2)(1+ r)+8H8 gives H0(2) = (v−5H5)+8(H5−H8)/(1+
r). Similarly, one computes H0(2)(v−5H5)+8(H5−H4)/(1+ r) for states ω3 and ω4.

As seen in the case of single period models, if there exists an arbitrage opportunity,
then there cannot exist an optimal solution to portfolio problems (5.1) or (5.2). In other
words, if (5.1) or (5.2) has a solution, then there are no arbitrage opportunities, in which
case there must exist a risk neutral probability measure. Indeed, principle (2.6) for single
period models generalizes to the following:

If (H,V ) is a solution of the optimal portfolio problem (5.1) or (5.2), then
a risk neutral probability measure is defined by

Q(ω) =
P(ω)BT u′

(
VT (ω),ω

)

E[BT u′(VT )]
, ω ∈Ω

where u′ denotes the partial derivative with respect to the first argument.

(5.4)

To see this, consider an arbitrary time t, arbitrary security n, and arbitrary event A in
Pt−1, the partition corresponding to Ft−1. Corresponding to A is Hn(t)1A, the position
in security n that is carried forward from time t−1 when event A occurs. The first order
necessary condition corresponding to this scalar-valued variable is

∑
ω∈A

P(ω)u′
(
BT (ω){v+G∗

T (ω)},ω)
BT (ω)∆S∗n(t,ω) = 0

This is true for all A ∈Pt−1, so

E
[
u′

(
BT{v+G∗

T}
)
BT ∆S∗n(t)|Ft−1

]
= 0

Hence EQ
[
∆S∗n(t)|Ft−1

]
= 0 if Q is defined as in (5.4), since VT = BT{v+G∗

T}.
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Example 5.1 (continued) The three equations in (5.3) correspond respectively to

u′
(
V2(ω1)

)
=

2+8r
1−8r

u′
(
V2(ω2)

)

u′
(
V2(ω3)

)
=

(3−5r)(1+4r)
(1+5r)(1−8r)

u′
(
V2(ω2)

)

u′
(
V2(ω4)

)
=

(3−5r)(2−4r)
(1+5r)(1−8r)

u′
(
V2(ω2)

)

Hence (5.4) implies

Q(ω1) =
(1+5r)(2+8r)

12
Q(ω2) =

(1+5r)(1−8r)
12

Q(ω3) =
(3−5r)(1+4r)

12
Q(ω4) =

(3−5r)(2−4r)
12

Conventional methods verify that this is the unique risk neutral probability measure.

It should be apparent that the approach illustrated in example 5.1 for computing the
optimal trading strategy may be impractical for large problems. With N equations and
N variables for each node of the underlying information tree, the resulting system of
equations may be too large to solve. But an alternative approach called dynamic pro-
gramming may reduce these computational difficulties.

The dynamic programming idea was already introduced in connection with comput-
ing the value of American options. The idea is to realize that when faced with a sequence
of decisions, the optimal decision to make now should be consistent with the intention
to act optimally in all future periods. In other words, if you know the optimal strategy
starting at time t + 1, then the determination of the optimal strategy starting at time t
can be reduced to one or more one-period problems. It follows that a multiperiod deci-
sion problem can be solved by solving a sequence of one-period problems. You work
backwards in time, first computing the optimal decisions with one period to go, then
computing the optimal decisions with two periods to go, and so forth.

In order to implement this procedure in the case of our optimal portfolio problem, it
is necessary to keep track of the optimal value process Ut(w), t = 0, . . . ,T . Here Ut(w)
equals the maximum (over all self-financing trading strategies) expected utility of time
T wealth given it is now time t, the time t wealth is w, and the time t history is Ft .
Hence Ut(w) will be an Ft measurable random variable.

The value of Ut(w) when t = T is clear: it coincides with the utility function, that is,

UT (w) = u(w,ω)

It turns out that for t < T the value of Ut(w) satisfies the important dynamic programming
functional equation:

Ut(w) = max
H∈Ft

E
[
Ut+1

(
Bt+1{w/Bt +H ·∆S∗t+1}

)|Ft
]

(5.5)
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Here H, the decision variable for period t, is an N-dimensional random variable that
is required to be Ft measurable. The value of H that maximizes this expression will
turn out to be the vector of optimal positions in the risky securities carried forward from
time t, given the history Ft . The notation H ·∆S∗t+1 represents the inner product, that is,
H ·∆S∗t+1 = H1 ·∆S∗1(t +1)+ · · ·+HN ·∆S∗N(t +1). This equals the discounted gain from
time t to time t +1. Notice that the argument of Ut+1 in (5.5) equals the time t +1 wealth
if the time t wealth is w, H gives the positions in the risky securities, and H0(t +1), the
position in the bank account, is chosen in a self-financing manner.

The dynamic programming equation (5.5) can be used to compute an optimal solu-
tion to the portfolio problem (5.1) or (5.2) by computing the optimal value functions
Ut(w) in a recursive manner. First compute UT−1(w), then compute UT−2(w), and so
forth. Along the way keep track of the maximizing values of H, for these will form
the components of the optimal trading strategy. When completed, U0(w) will equal the
optimal value of the objective function in (5.1) or (5.2) given w = v. Thus the dynamic
programming method provides a bonus: you have a solution for all possible values of
the initial wealth w = v, not just a specific value.

Example 5.1 (continued) Taking t = 1 and either ω1 or ω2, the right hand side of
(5.5) becomes

max
h

E
[
1− exp

(− (1+ r)2{w/(1+ r)+h∆S∗2}
)|S1 = 8

]

=max
h

(
1− 1

2
exp

{− (1+ r)w− (1−8r)h
}− 1

2
exp

{− (1+ r)w+(2+8r)h
})

The decision variable h here is a scalar. Computing the derivative of this argument
with respect to h and setting this equal to zero soon leads to the maximizing value of h,
namely,

h =−1
3

ln
(

2+8r
1−8r

)

Substituting this back into the right hand side of (5.5) yields

U1(w) = 1− 1
2

exp
{− (1+ r)w

}
{(

2+8r
1−8r

)(1−8r)/3

+
(

2+8r
1−8r

)−(2+8r)/3
}

= 1− 3
2
(2+8r)−(2+8r)/3(1−8r)−(1−8r)/3 exp

{− (1+ r)w
}

for ω1 and ω2.
In a similar fashion, taking t = 1 and either ω3 or ω4, the right hand side of (5.5)

becomes

max
h

E
[
1− exp

(− (1+ r)2{w/(1+ r)+h∆S∗2}
)|S1 = 4

]

=max
h

(
1− 1

2
exp

{− (1+ r)w− (2−4r)h
}− 1

2
exp

{− (1+ r)w+(1+4r)h
})
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so ln[(2−4r)/(1+4r)]/3 is the maximizing value of h and

U1(w) = 1− 1
2

exp
{− (1+ r)w

}
{(

2−4r
1+4r

)(1+4r)/3

+
(

2−4r
1+4r

)−(2−4r)/3
}

= 1− 3
2
(2−4r)−(2−4r)/3(1+4r)−(1+4r)/3 exp

{− (1+ r)w
}

for ω3 and ω4.
We are now ready to do the dynamic programming iteration and compute U0(w).

Denote

f (r,ω) =





3
2
(2+8r)−(2+8r)/3(1−8r)−(1−8r)/3, ω = ω1,ω2

3
2
(2−4r)−(2−4r)/3(1+4r)−(1+4r)/3, ω = ω3,ω4

so U1(w) can be written concisely as

U1(w) = 1− f (r,ω)exp{−(1+ r)w}
Equation (5.5) becomes

U0(ω) = max
h

E
[
1− f (r,ω)exp

{− (1+ r)[(1+ r){w+h∆S1}]
}]

= max
h

(
1− 1

2
f (r,ω1)exp

{− (1+ r)2w− (1+ r)(3−5r)h
}

− 1
2

f (r,ω3)exp
{− (1+ r)2w+(1+ r)(1+5r)h

})

Setting the derivative with respect to h equal to zero, one is eventually led to the maxi-
mizing value of h:

h =
3ln(3−5r)+(2−4r) ln(2−4r)+(1+4r) ln(1+4r)

12(1+ r)

− 3ln(1+5r)+(2+8r) ln(2+8r)+(1−8r) ln(1−8r)
12(1+ r)

Substituting this back into the right hand side of (5.5) enables one to obtain an expres-
sion for U0(w). However, the algebraic details are excessive, so an actual formula will
not be provided.

In summary, the dynamic programming approach can, in principle, be used to solve
the optimal portfolio problem. It provides solutions for many cases where a conven-
tional approach, based on the first-order necessary conditions, is inadequate. On the
other hand, there are many practical situations where the computational difficulties are
formidable, if not unsurmountable. Fortunately, the risk neutral computational approach,
which is the subject of the next section, can often overcome these computational diffi-
culties.
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Exercise 5.1. Use dynamic programming to compute the optimal trading strategy as
a function of the initial wealth v for the securities market in example 5.1. Use log
utility, that is, u(w) = ln(w), and assume the interest rate r is an arbitrary constant.
Compute the optimal objective value as a function of the parameters r and v. (Hints:
try the special case r = 0 first; show the optimal time 0 position in the risky security is
(1+ r)(1−5r)v/[(1+5r)(3−5r)].)

Exercise 5.2. Use dynamic programming to show that with exponential utility (that is,
u(w) = a− (b/c)exp{−cw}. where a,b > 0 and c > 0 are scalar parameters), with a
general securities model, and with a predictable bank account process, that the optimal
position in the securities is always independent of the current wealth. What happens if
you drop the predictability requirement? Give a proof or use the security in example 5.1
to provide a counter-example.

Exercise 5.3. Suppose there is a single risky security that follows the binomial model
with parameters 0 < d < 1+r < u and 0 < p < 1. The interest rate r≥ 0 is constant. The
initial price S0, the initial wealth v, and the time horizon T are arbitrary. Use dynamic
programming to compute the optimal trading strategy for the following utility functions:

(a) u(w) = 1− exp{−w} (Hint: show by induction that Ut(w)) is of the form 1−
kt exp{−(1+ r)T−tw}, where kt is a constant.)

(b) u(w) = ln(w) (Hint: show by induction that Ut(w) is of the form ln(w)+ kt , where
kt is a constant.)

Exercise 5.4. For the model in example 5.1 with constant interest rate r = 0, compute
the optimal trading strategy for the indicated utility function, using both the standard op-
timization approach (i.e., set the three partials equal to zero) and dynamic programming.
Verify that your answers are the same.

(a) u(w) =−w−1 (isoelastic utility)

(b) u(w) = βw− 1
2w2 (quadratic utility).

5.2 Optimal Portfolios and Martingale Methods

The risk neutral computational approach for solving multiperiod optimal portfolio prob-
lems is pretty much the same as for solving single period problems. Given problem
(5.1) or (5.2), the first step is to identify Wv, the set of all the attainable wealths. This
is Wv = {w ∈ RK : W = VT for some self-financing H with V0 = v}, the set of all the
time T contingent claims that can be generated by some self-financing trading strategy
starting with initial wealth v. If the model is complete, this set is simply

Wv =
{

W ∈ RK : EQ[W/BT ] = v
}

(5.6)
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If the model is not complete, then the specification of Wv is more complex and will be
discussed in a later section.

The second step is to solve the subproblem:

maximize Eu(W )

subject to W ∈Wv
(5.7)

If the model is complete, then this problem can be solved with a Lagrange multiplier
technique, as will be explained in a moment. Finally, having obtained the optimal so-
lution Ŵ , say, the third step is to compute the trading strategy H which generates Ŵ ,
doing this exactly as one would compute the trading strategy that replicates a contingent
claim.

Throughout this section it will be assumed that the model is complete, so the only step
requiring explanation is the second: solving subproblem (5.7). An efficient procedure
will now be described, and examples will be provided.

Actually, the second step is very little different from what was done for single period
models. In view of (5.6), we want to solve (5.7) by introducing the Lagrange multiplier
λ and then solving

maximize Eu(W )−λEQ[W/BT ] (5.8)

This is an unconstrained problem with the variable W ∈ RK . Introducing the state price
density L = Q/P, the objective function in (5.8) can be rewritten as

E[u(W )−λLW/BT ] = ∑
ω∈Ω

P(ω)
[
u
(
W (u)

)−λL(ω)W (ω)/BT (ω)
]

If W maximizes this expression, then the necessary conditions must be satisfied, giving
rise to one equation for each ω ∈Ω:

u′
(
W (ω)

)
= λL(ω)/BT (ω), all ω ∈Ω

(it is now being assumed that the utility function u :R→R is a function only of wealth,
independent of the state ω ∈Ω). This is equivalent to

W (ω) = I
(
λL(ω)/BT (ω)

)
, all ω ∈Ω (5.9)

where I denotes the inverse function corresponding to u′.
All that remains is to determine the correct value of λ . This is simply the value such

that v = EQ[W/BT ] is satisfied when (5.9) is substituted for W . In other words, λ should
be chosen to satisfy

EQ
[
I(λL/BT )/BT

]
= v (5.10)

The inverse function I is normally decreasing with a range that includes (0,∞), so nor-
mally a solution λ to (5.10) will exist for any v > 0. Hence the solution of subproblem
(5.7) is really no different from what it was for single period models, except that now
we discount by BT rather than B1. In view of the single period results in section 2.2, we
immediately have the following examples.
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Example 5.2 (exponential utility). The exponential utility function of example 2.2 can
easily be generalized to be of the form u(w) = a−bcexp{−w/c}, where a, b, and c are
scalar parameters with b > 0 and c > 0. This gives the optimal attainable wealth

W =
v+ cE[(L/BT ) ln(L/BT )]

E[L/BT ]
− c ln(L/BT )

and the optimal objective value

Eu(W ) = a−bcE[L/BT ]exp
{−v/c−E[(L/BT ) ln(L/BT )]

E[L/BT ]

}

Example 5.3 (log utility). If u(w) = ln(w), then the optimal attainable wealth is

W = vBT /L

and the optimal objective value is

Eu(W ) = ln(v)−E[ln(L/BT )]

Example 5.4 (isoelastic utility). If u(w) = γ−1wγ , where −∞ < γ < 1 and γ 6= 0, then
the optimal attainable wealth is

W =
v(L/BT )−1/(1−γ)

E
[
(L/BT )−γ/(1−γ)

]

and the optimal objective value is

Eu(W ) =
vγ

γ

{
E

[
(L/BT )−γ/(1−γ)

]}1−γ

Example 5.5 (quadratic utility). This example builds on the results in section 2.4. If
u(w) = βw−w2/2 for parameter β > 0, then I(i) = β − i. Equation (5.9) becomes
W = β −λL/BT . Solving equation (5.10) for λ and then substituting gives

W = β +
[

v−βEQ[1/BT ]
EQ[L/B2

T ]

]
L/BT

for the optimal attainable wealth. Substituting this into the objective function eventually
leads to

Eu(W ) =
β 2

[
EQ[L/B2

T ]−{EQ[1/BT ]}2
]− v2 +2βvEQ[1/BT ]

2EQ[L/B2
T ]

for the optimal objective value.

Example 5.1 and 5.2 (continued) The risk neutral probability measure and the state
price vector are easily computed to be as follows:
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ω Q(ω) L(ω) = Q(ω)/P(ω)
ω1 (1+5r)(2+8r)/12 (1+5r)(2+8r)/3
ω2 (1+5r)(1−8r)/12 (1+5r)(1−8r)/3
ω3 (3−5r)(1+4r)/12 (3−5r)(1+4r)/3
ω4 (3−5r)(2−4r)/12 (3−5r)(2−4r)/3

We first compute E[L/B2] = EQ[(1+ r)−2] = (1+ r)−2,

E[(L/B2) ln(L/B2)] = (1+ r)−2EQ[ln(L)]−2(1+ r)−2 ln(1+ r)

and

EQ[ln(L)] =
1
2

(
−12ln(3)+3(1+5r) ln(1+5r)+3(3−5r) ln(3−5r)

+(1+5r)(2+8r) ln(2+8r)+(1+5r)(1−8r) ln(1−8r)

+(3−5r)(1+4r) ln(1+4r)+(3−5r)(2−4r) ln(2−4r)
)

Hence the optimal attainable wealth is

W (ω) = v(1+ r)2 +EQ[ln(L)]+ ln(3)

+





− ln(1+5r)− ln(2+8r), ω = ω1

− ln(1+5r)− ln(1−8r), ω = ω2

− ln(3−5r)− ln(1+4r), ω = ω3

− ln(3−5r)− ln(2−4r), ω = ω4

Solving the system

(1+ r)2H0(2)+9H1(2) = W (ω1)

(1+ r)2H0(2)+6H1(2) = W (ω2)

yields

H1(2) =−1
3

ln
(

2+8r
1−8r

)

and

H0(2) = v+
EQ[ln(L)]+ ln(3)

(1+ r)2

+
2ln(2+8r)− ln(1+5r)−3ln(1−8r)

(1+ r)2

in states ω1 and ω2. Similarly, solving the system

(1+ r)2H0(2)+6H1(2) = W (ω3)

(1+ r)2H0(2)+3H1(2) = W (ω4)

yields

H1(2) =
1
3

ln
(

2−4r
1+4r

)
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and

H0(2) = v+
EQ[ln(L)]+ ln(3)

(1+ r)2

+
2ln(1+4r)− ln(3+5r)−2ln(2−4r)

(1+ r)2

in states ω3 and ω4.
Next, solving the system

(1+ r)H0(1)+8H1(1) = V1(ω1) = (1+ r)H0(2,ω1)+8H1(2,ω1)

(1+ r)H0(1)+4H1(1) = V1(ω3) = (1+ r)H0(2,ω3)+4H1(2,ω3)

yields the values of H0(1) and H1(1) (see the calculations in section 5.1). Finally,

Eu(W ) = 1− (1+ r)−2 exp
{− v(1+ r)2−EQ[ln(L)]+2ln(1+ r)

}

is the optimal objective value.

Example 5.6. Suppose there is a single risky security that is governed by the binomial
model with general parameters r, p, u, and d, and suppose u(w) = ln(w). In view of
section 3.5,

L(ω) =
Q(ω)
P(ω)

=
(

q
p

)n (
1−q
1− p

)T−n

where q = (1 + r−d)/(u−d) and n is the number of “up” moves by the risky security
corresponding to state ω . Recall that NT , the number of up moves during the T periods,
is a binomial random variable having parameters T and p. With log utility, it follows
from example 5.3 that

W = v(1+ r)T
(

p
q

)NT
(

1− p
1−q

)T−NT

is the optimal attainable wealth. Moreover, since ENT = pT , the optimal objective value
is

Eu(W ) = ln(v)+ ln(1+ r)T −E ln(L)

= ln(v)+T ln(1+ r)−E

[
ln

(
q
p

)NT
]
−E

[
ln

(
1−q
1− p

)T−NT
]

= ln(v)+T ln(1+ r)− pT ln
(

q
p

)
− (1− p)T ln

(
1−q
1− p

)

Now for arbitrary n < T , suppose NT−1 = n and consider the optimal positions in the
bank account and risky security that should be carried forward from time T −1. These
are obtained by solving

(1+ r)T H0(T )+ST−1uH1(T ) = v(1+ r)T (p/q)n+1({1− p}/{1−q})T−n−1

(1+ r)T H0(T )+ST−1dH1(T ) = v(1+ r)T (p/q)n({1− p}/{1−q})T−n
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thereby yielding

H1(T ) =
v(1+ r)T (p/q)n

({1− p}/{1−q})T−n−1(p−q)
ST−1(u−d)q(1−q)

and

H0(T ) =
v(p/q)n

({1− p}/{1−q})T−n−1[u(1− p)q−d(1−q)p]
(u−d)q(1−q)

Since VT−1 = (1+ r)T−1H0(T )+ST+1H1(T ), it follows with some algebra that

VT−1 = v(1+ r)T−1(p/q)n({1− p}/{1−q})T−n−1

Now consider the fraction of money that is invested at time T −1 in the risky security.
This is

ST−1H1(T )
VT−1

=
(1+ r)(p−q)
(u−d)q(1−q)

(5.11)

Notice this is independent of n and T . Moreover, notice that VT−1 has the same form as
VT = W , so an induction argument can be used to show that the optimal trading strategy
has a very simple form: at each time and in each state simply invest the fraction (5.11)
of one’s wealth in the risky asset.

Exercise 5.5. For the model in example 5.1 with constant interest rate r equal to a gen-
eral parameter 0 ≤ r < 0.125 and with log utility u(w) = ln(w), compute the optimal
attainable wealth, the optimal objective value, and the optimal trading strategy using the
risk neutral computational approach.

Exercise 5.6. In the specific case of example 5.1 with r = 0, compute the optimal at-
tainable wealth, the optimal objective value, and the optimal trading strategy under the
utility function

(a) u(w) =−w−1

(b) u(w) = βw−w2/2.

Exercise 5.7. Suppose there is a single risky security that is governed by the bino-
mial model over T periods with constant interest rate r ≥ 0 and general values for
the parameters S0, p, u, and d. Compute the optimal attainable wealth, the optimal
objective value, and the optimal trading strategy under the exponential utility function
u(w) = −exp(−w). In particular, show that if time t node entails n “ups” and t − n
“downs,” then under the optimal strategy the corresponding value of the portfolio is

v(1+ r)t +
[qt−n] ln(q/p)+ [(1−q)t +(n− t)] ln

(
(1−q)/(1− p)

)

(1+ r)T−t
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Exercise 5.8. For the binomial model as in exercise 5.7 and with the quadratic utility
function u(w) = βw−w2/2, show that the optimal attainable wealth is

W = β +
(1+ r)T v−β[

q2/p+(1−q)2/(1− p)
]T

(
q
p

)n [
1−q
1− p

]T−n

where n is the number of “up” moves in the corresponding sample path. Moreover, show
that the optimal objective value is

Eu(W ) = β 2/2−
[
(1+ r)T v−β

]2

2
[
q2/p+(1−q)2/(1− p)

]T

Hint:
T

∑
n=0

(
T
n

)
anbT−n = (a+b)T

Exercise 5.9. For the binomial model as in exercises 5.7 and 5.8 and with the isoelastic
utility function u(w) = γ−1wγ , show that the optimal attainable wealth is

W =
(1+ r)T vL−1/(1−γ)

[
p
(

q
p

)−γ/(1−γ)
+(1− p)

(
1−q
1−p

)−γ/(1−γ)
]T

and the optimal objective value is

Eu(W ) =
1
γ

[
(1+ r)T v

]γ
[

p
(

q
p

)−γ/(1−γ)

+(1− p)
(

1−q
1− p

)−γ/(1−γ)
]T (1−γ)

Hint: see exercise 5.8.

5.3 Consumption-Investment and Dynamic Programming

A consumption process C = {Ct ; t = 0, . . . ,T} is a non-negative, adapted stochastic pro-
cess with Ct representing the amount of funds consumed by the investor at time t. A
consumption-investment plan consists of a pair (C,H), where C is a consumption pro-
cess and H is a trading strategy. A utility will be earned for the amount that is consumed
in each period; naturally, the higher the consumption, the higher the utility. The investor
seeks to choose the consumption-investment plan that maximizes the expected utility
over the T periods. In particular, the investor faces a trade-off between consumption and
investment, especially in the early periods. This section will explain how to solve this
problem with dynamic programming.

Given the investor’s initial wealth v, the consumption-investment plan (C,H) will be
called self-financing if no money is added to or withdrawn from the portfolio between



156 CHAPTER 5. OPTIMAL CONSUMPTION AND INVESTMENT PROBLEMS

times 0 and T , other than the amounts that are consumed. As usual,

Vt = H0(t)Bt +
N

∑
n=1

Hn(t)Sn(t), t ≥ 1 (5.12)

represents the value of the portfolio before any time t transactions. It will be assumed
for t ≥ 1 that Vt is also the value of the portfolio before any time t consumption. We let
V0 = v denote the initial wealth. Thus to say (C,H) is self-financing means that

Vt = Ct +H0(t +1)Bt +
N

∑
n=1

Hn(t +1)Sn(t), t = 0, . . . ,T −1 (5.13)

Given initial wealth v, the self-financing consumption-investment plan (C,H) is said
to be admissible if CT ≤VT . Since C is a non-negative process, this implies VT ≥ 0.

The investor’s consumption-investment problem is

maximize E

[
T

∑
t=0

α tu(Ct)

]

subject to v = initial wealth

(C,H) is admissible

(5.14)

Here u : R(−∞,∞] is a specified concave increasing utility function and α is a specified
scalar parameter satisfying 0 < α ≤ 1. Since the consumption process is required to be
non-negative, without loss of generality it will be assumed that u(w) =−∞ for all w < 0
(whereas, of course, u(w) >−∞ for all w > 0).

To solve this problem with dynamic programming we will compute, working back-
wards in time in a recursive manner, the value function ut(w). This represents the max-
imum expected utility of consumption through time T , starting with wealth w and con-
sumption at time t and given the time t history Ft .

The value of uT is easy to specify. Since the utility function u is increasing, the
investor will want to consume all the wealth that is available in the final period. Thus
uT = u.

Starting at time T − 1 with wealth w, the investor is faced with a problem that is
essentially equivalent to a series of the single period problems of section 2.3:

maximize u(CT−1)+E[αuT (W )|FT−1]

subject to w = CT−1 +H0(T )BT−1 +
N

∑
n=1

Hn(T )Sn(T −1)

W = H0(T )BT +
N

∑
n=1

Hn(T )Sn(T )

Hn(T ) ∈FT−1 for n = 0, . . . ,N; CT−1 ∈FT−1

(5.15)

Notice the assumption that u(w) =−∞ for all w < 0 will force the solution of (5.15) to
satisfy CT−1 ≥ 0 and W ≥ 0.
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Using the first constraint to solve for H0(T ) and then substituting this in the second
constraint, one eventually obtains

W = (w−CT−1)BT /BT−1 +
N

∑
n=1

Hn(T )[Sn(T )−BT Sn(T −1)/BT−1]

= (w−CT−1)BT /BT−1 +BT

N

∑
n=1

Hn(T )∆S∗n(T )

Hence (5.15) can be rewritten as

maxu(CT−1)+αE

[
uT

(
(w−CT−1)BT /BT−1 +BT

N

∑
n=1

Hn(T )∆S∗n(T )

)∣∣∣∣∣FT−1

]

subject to Hn(T ) ∈FT−1 for n = 1, . . . ,N and CT−1 ∈FT−1

We now set uT−1(w) equal to this optimal objective value.
In general, having computed ut(w), the value function ut−1(w) is computed from the

dynamic programming functional equation

ut−1(w)= max

{
u(Ct−1)+αE

(
ut

(
(w−Ct−1)Bt/Bt−1 +Bt

N

∑
n=1

Hn(t)∆S∗n(t)

)∣∣∣∣∣Ft−1

)}

(5.16)
where the maximum is over all Hn(t) ∈ Ft−1 for n = 1, . . . ,N and Ct−1 ∈ Ft−1. The
value function u0(v) will then be the optimal objective value for the original problem
(5.14) or (5.15), and the maximizing values of Ct−1 and Hn(t) will be part of the opti-
mal consumption-investment plan. The final component, H0, will come from the self-
financing equation.

Example 5.7. Consider the security model of example 5.1 with interest rate the constant
r ≥ 0 and utility function u(w) = u2(w) = ln(w). The dynamic programming functional
equation for t = 2 and for states ω1 and ω2 is

u1(w) = max
{

ln(c)+
α
2

ln[(w− c)(1+ r)+(1−8r)h]

+
α
2

ln[(w− c)(1+ r)− (2+8r)h]
} (5.17)

Computing the partial derivatives of the argument with respect to c and h and then setting
these equal to zero gives two equations; the solution is eventually found to be

c =
w

1+α
and h =−1

2
α(1+ r)(1+16r)w

(1+α)(2+8r)(1−8r)

Note this means that if S1 = 8 and the wealth at time 1 is w, then it is optimal to consume
w/(1+α) right away and invest the balance by taking the (short) position h in the risky
security and the (self-financing) position

H0(2) =
αw/(1+α)−8h

1+ r
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in the bank account. Substituting these values of c and h back into the dynamic pro-
gramming equation (5.17) eventually results in the time 1 value function for states ω1

and ω2:
u1(ω) = (1+α) ln(w)+ f8(α,r)

where f8(α,r) is a new function defined for convenience by

f8(α,r) = α ln
(

3α(1+ r)
2(1+α)(1−8r)

)
+

α
2

ln
(

1−8r
2+8r

)
− ln(1+α)

Similarly, if S1 = 4, then one computes the optimal time 1 consumption to be c =
w/(1+α), the optimal position in the risky security:

h =
1
2

α(1+ r)(1−8r)w
(1+α)(2−4r)(1+4r)

and the time 1 value function for states ω3 and ω4:

u1(w) = (1+α) ln(w)+ f4(α,r)

where f4(α,r) is a new function defined for convenience by

f4(α,r) = α ln
(

3α(1+ r)
2(1+α)(1+4r)

)
+

α
2

ln
(

1+4r
2−4r

)
− ln(1+α)

To summarize matters at this point,

u1(w) =

{
(1+α) ln(w)+ f8(α,r), ω = ω1,ω2

(1+α) ln(w)+ f4(α,r), ω = ω3,ω4

and we are now in a position to use the dynamic programming equation (5.16) to recur-
sively compute u0:

u0(w) = max
c,h

{
ln(c)+

α
2

(1+α) ln[(w− c)(1+ r)+(3−5r)h]

+
α
2

f8 +
α
2

(1+α) ln[(w− c)(1+ r)− (1+5r)h]+
α
2

f4

}

Computing the partial derivatives and so forth eventually leads to

c =
w

1+α +α2 and h =
α(1+α)(1+ r)(1−5r)w

(1+α +α2)(3−5r)(1+5r)

in which case

u0(w) = (1+α +α2) ln(w)− ln(1+α +α2)+α(1+α) ln
(

2α(1+α)(1+ r)
(1+α +α2)

)

− α
2

(1+α) ln[(1+5r)(3−5r)]+
α
2

f8(α,r)+
α
2

f4(α,r)
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If you relax the assumption that u(c) =−∞ for all c≤ 0, then the dynamic program-
ming method can still be utilized to compute optimal consumption- investment plans,
provided you explicitly worry about the constraint that the consumption process be non-
negative. This may entail considerable extra work, as can be seen in the following
example.

Example 5.8. Consider the security model of examples 5.1 and 5.7 with interest rate
r = 0, α = 1, and exponential utility function u(c) = −exp(−c). Since u′(0) = 1, in
order to guard against negative consumption levels it is necessary to explicitly impose in
the dynamic programming functional equation not only the constraint that the decision
variable c≥ 0, but also constraints which guarantee that next period’s wealth will be non-
negative. For example, for states ω1 and ω2 and time t = 1 the dynamic programming
equation should be

u1(w) = max
c≥0

w−c+h≥0
w−c−2h≥0

{
−e−c− 1

2
e−w+c−h− 1

2
e−w+c+2h

}

These three constraints define the feasible region, a triangular subset of R2 with vertices
at (c,h) = (0,−w), (0,w/2), and (w,0).

We compute the maximizing values of the decision variables c and h by examining
the partial derivatives. The partial derivative of the argument with respect to h is equal
to zero if and only if h =−1

3 ln2. The partial derivative with respect to c is equal to zero
if and only if

c =
1
2

{
w+ ln2− ln

[
e−h + e2h

]}

Substituting h =−1
3 ln2 =−0.231, we see that the point (c,h)= (0.0283+w/2,−0.231)

maximizes the argument over R2. This point will fall in the feasible region if and only
if w≥ 0.5186, in which case, we see by substitution, u1(w) =−1.9442e−w/2.

If w = 0.5186, then the solution just discussed will make the constraint w−c+h≥ 0
tight. We therefore realize that the solution (c,h) must satisfy c = w + h for all w ≤
0.5186. Substituting this equation, the objective function becomes −e−w−h− 1

2 − 1
2e3h.

The derivative of this equals zero if and only if h = −w/4− 0.1014, in which case
c = 3w/4− 0.1014. But note that this gives c ≥ 0 if and only if w ≥ 0.1352. We
therefore conclude that the optimal solution for all w satisfying 0.1352 ≤ w ≤ 0.5186
is (c,h) = (3w/4− 0.1014,−w/4− 0.1014), in which case, we see by substitution,
u1(w) =−1.4756e−3w/4− 1

2 .
For w = 0.1352 this solution gives c = 0. We therefore realize that for all w satisfying

0 ≤ w ≤ 0.1352 the optimal solution must be at the vertex of the triangle where c = 0
and h =−w, in which case u1(w) =−3

2 − 1
2e−3w.

Needless to say, the computation of u1(w) for states ω3 and ω4 will be equally difficult
(see exercise 5.13). Moreover, with the messy nature of u1(w), the computation of u0(w)
will be even more difficult. Without taking this example further, it should be clear that
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the computational difficulties can become formidable when you relax the assumption
that u′(0) = ∞.

Exercise 5.10. For the security model of example 5.1 with constant interest rate r = 0,
utility parameter α = 1, and isoelastic utility function u(c) = −1/c, use dynamic pro-
gramming to compute the optimal consumption process and the optimal trading strategy.

Exercise 5.11. For a single security governed by the binomial model with parameters
p, u, d, r, and T , with utility parameter θ ≤ 1, and with log utility u(c) = ln(c), use
dynamic programming to show that the optimal amount to consume at time t is

Ct =
Wt

1+α + · · ·+αT−t

where Wt is the wealth available at that same time. Moreover, show that at every time t
the optimal fraction of the invested funds which are put in the risky security is

StH1(t +1)
Wt −Ct

=
(1+ r)[pu+(1− p)d− (1+ r)]

(1+ r−d)(u−1− r)

Finally, show that the time t value function is of the form ut(w) = (1 + α + · · ·+
αT−t) ln(w) plus a constant.

Exercise 5.12. For a single security governed by the binomial model with parameters
p, u, d, r, and T , with utility parameter α ≤ 1, and with isoelastic utility u(c) = cγ/γ ,
use dynamic programming and an induction argument to show that the optimal amount
to consume at time t is Ct = ktWt , where kt is a positive constant that depends on t but is
independent of the state ω . Show that at every time t the optimal fraction of the invested
funds which are put in the risky security is

StH1(t +1)
Wt −Ct

=
(1+ r)

[
(1− p)1/(γ−1)(1+ r−d)1/(γ−1)− p1/(γ−1)(u−1− r)1/(γ−1)

]

−(1− p)1/(γ−1)(1+ r−d)γ/(γ−1) + p1/(γ−1)(u−1− r)γ/(γ−1)

Finally, show that the time t value function is of the form ut(w) = γtwγ , where γt is a
constant that depends on t but is independent of the state ω .

Exercise 5.13. For the situation in example 5.8, compute u1(w) and the corresponding
maximizing values of c and h for states ω3 and ω4 and for all w≥ 0.

5.4 Consumption-Investment and Martingale Methods

As an alternative to dynamic programming, the risk neutral probability measure can be
exploited to provide an efficient method for solving the consumption-investment prob-
lem (5.14), an approach that is a natural generalization of the one taken for single period
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models. Throughout this section it will be assumed that there exists a unique martingale
measure Q, so the model is complete. A consumption process C will be called attain-
able if there exists a trading strategy H such that (C,H) is an admissible consumption-
investment plan satisfying CT = VT (implicit is a specified initial wealth V ). In this case
one says that H replicates or generates C.

The first step in the risk neutral computational approach is to characterize the set of
all attainable consumption processes. The second step is to find the element of this set
that maximizes expected utility, that is, the objective function in (5.14). Finally, one
derives the self-financing trading strategy H that generates this optimal C.

We begin by observing the following:

Given an initial wealth v≥ 0, a consumption process C, and a self-financing
trading strategy H, one has

Vt/Bt = v+G∗
t −

t−1

∑
u=0

Cu/Bu, t = 1, . . . ,T

(5.18)

One can see this by an induction argument. The reader can use (5.13) to verify this is
true for t = 1. For the induction step, suppose this equation holds for t = s. Now (5.13)
implies

H0(s+1) = Vs/Bs−Cs/Bs−
N

∑
n=1

Hn(s+1)S∗n(s)

so substituting this in (5.12) with t = s+1 after dividing by Bs+1 yields

Vs+1/Bs+1 = Vs/Bs +
N

∑
n=1

Hn(s+1)∆S∗n(s+1)−Cs/Bs

The induction assumption that (5.18) holds for t = s therefore finishes the argument that
(5.18) holds for t = s+1.

Relationship (5.18) will enable us to characterize the attainable consumption pro-
cesses. If we define Mt = v + G∗

t , then M is a martingale under the risk neutral proba-
bility measure Q satisfying M0 = v. Hence if (5.18) applies, then Mt = Vt/Bt +C0/B0 +
· · ·+Ct−1/Bt−1 and

v = EQ[Vt/Bt +C0/B0 + · · ·+Ct−1/Bt−1], t = 1, . . . ,T

If, in addition, CT = VT , then

v = EQ[C0/B0 + · · ·+CT /BT ] (5.19)

In other words, equation (5.19) is a necessary condition for the consumption process C
to be attainable. It turns out that (5.19) is also a sufficient condition, that is,

Given the initial wealth v ≥ 0, the consumption process C is attainable if
and only if (5.19) holds. If V0 is the value of the portfolio which replicates
C, then V0 ≥ 0.

(5.20)
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To see why equation (5.19) is sufficient, observe that X ≡ BT [C0/B0 + · · ·+CT /BT ]
is an attainable contingent claim. Actually, X should be viewed as the composition of
T + 1 attainable contingent claims, where the t th claim is the receipt of Ct dollars at
time t, which are then deposited and held in the bank account until time T . Thus there
are T self-financing trading strategies H1, . . . ,HT that replicate the T contingent claims
C1, . . . ,CT , respectively. Taking H ≡ H1 + · · ·+HT , it follows that H is a seif-financing
trading strategy such that (C,H) is an admissible consumption-investment plan with
CT = VT .

For the second part of (5.20), we see from (5.18) that

Vt/Bt +
t−1

∑
u=0

Cu/Bu = EQ

[
VT /BT +

T−1

∑
u=0

Cu/Bu

∣∣∣∣∣Ft

]

is a martingale under Q with time T value equal to
T

∑
u=0

Cu/Bu

Thus

Vt/Bt = EQ

[
T

∑
u=t

Cu/Bu

∣∣∣∣∣Ft

]

must be non-negative for all t.
Assuming the utility function satisfies u(c) = −∞ for all c < 0, then by (5.20) the

optimal consumption-investment problem (5.14) is equivalent to the following:

maximize E

[
T

∑
t=0

α tu(Ct)

]

subject to EQ[C0/B0 + · · ·+CT /BT ] = v

C is an adapted process

(5.21)

The assumption about the utility function will guarantee that the optimal solution is
a non-negative stochastic process. In view of (5.20), the optimal solution will be an
attainable consumption process whose objective value is greater than or equal to that for
every other attainable consumption process. Hence with a solution C of (5.21), all that
remains to obtain the solution of (5.14) is to derive the trading strategy that replicates C.

Problem (5.21)can be solved with a Lagrange multiplier in a fashion similar to the
optimal portfolio problem of section 5.2. However, the situation here is a little more
tricky because the decision variable is an adapted process, not just a random variable.
The following result will play a crucial role.

EQ

[
T

∑
t=0

Ct/Bt

]
= E

[
T

∑
t=0

CtNt

]

where N is the adapted stochastic process defined for all t by Nt =
E[L|Ft ]/Bt .

(5.22)
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Since L = Q/P, this result follows from a simple calculation:

EQ

[
T

∑
t=0

Ct/Bt

]
= E

[
L

T

∑
t=0

Ct/Bt

]
= E

[
T

∑
t=0

E[CtL/Bt |Ft ]

]
= E

[
T

∑
t=0

CtNt

]

As a consequence, problem (5.21) can be rewritten as follows:

maximize E

[
T

∑
t=0

α tu(Ct)

]

subject to E

[
T

∑
t=0

CtNt

]
= v

C is an adapted process

(5.23)

Introducing a Lagrange multiplier λ , we now want to solve:

maximize E

[
T

∑
t=0

α tu(Ct)−λ
T

∑
t=0

CtNt

]
(5.24)

With suitable assumptions about the utility function u to ensure the optimal solution
C will feature strictly positive consumption values (e.g., it suffices to require that the
marginal utility u′(c) converges to ∞ as c approaches 0 from above and that u′(c) con-
verges to 0 as c increases to ∞), the following first order necessary condition must be
satisfied:

α tu′(Ct) = λNt , all ω ∈Ω, t = 0, . . . ,T (5.25)

Equivalently, if I(·) is the inverse of the marginal utility function u′(·), then we must
have

Ct = I(λNt/α t), all ω ∈Ω, t = 0, . . . ,T (5.26)

All that remains is to establish the correct value of the Lagrange multiplier λ ; this is
simply the value such that the constraint in (5.23) is satisfied when (5.26) is substituted,
that is, the correct value of λ is the unique solution of

E

[
T

∑
t=0

NtI(λNt/α t)

]
= v (5.27)

Example 5.9. With u(c) = ln(c) we have u′(c) = c−1 and I(i) = i−1, in which case
I(λNt/α t) = α t/(λNt). Equation (5.27) becomes

v = E

[
T

∑
t=0

Ntα t/(λNt)

]
=

1
λ

T

∑
t=0

α t
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Thus

λ =





T +1
v

, α = 1

1−αT+1

v(1−α)
, α < 1

It follows from (5.26) that the optimal solution is

Ct =
α t

λNt
=





v
(T +1)Nt

, α = 1; t = 0, . . . ,T

α tv(1−α)
(1−αT+1)Nt

, α < 1; t = 0, . . . ,T

Thus, for instance, when α = 1 the optimal objective value is (T + 1) ln{v/(T + 1)}−
E ln(N0)−·· ·−E ln(NT ).

Examples 5.1 and 5.9 (continued) For the security model of example 5.1 with a con-
stant interest rate r ≥ 0, the stochastic process N is as follows:

ω P(ω) L(ω) N0 N1 N2

ω1 1/4 (1+5r)(2+8r)
3 1 1+5r

2(1+r)
L

(1+r)2

ω2 1/4 (1+5r)(1−8r)
3 1 1+5r

2(1+r)
L

(1+r)2

ω3 1/4 (3−5r)(1+4r)
3 1 3−5r

2(1+r)
L

(1+r)2

ω4 1/4 (3−5r)(2−4r)
3 1 3−5r

2(1+r)
L

(1+r)2

The optimal consumption process is Ct = α tv/[(1+α +α2)Nt ], so, in particular,

C2 = V2 =
α2v(1+ r)2

(1+α +α2)L

Now by considering how to replicate the contingent claim V2, we must have, in states ω1

and ω2, respectively,

(1+ r)2H0(2)+9H1(2) =
α2v(1+ r)2

(1+α +α2)L(ω1)

and

(1+ r)2H0(2)+6H1(2) =
α2v(1+ r)2

(1+α +α2)L(ω2)

Solving for H0(2) and H1(2) yields

H1(2) =− α2v(1+ r)2(1+16r)
(1+α +α2)(1+5r)(2+8r)(1−8r)
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and

H0(2) =
12α2v(1+10r)

(1+α +α2)(1+5r)(2+8r)(1−8r)
Hence the value of the portfolio just after time 1 consumption is

(1+ r)H0(2)+8H1(2) =
4α2v(1+ r)(1+4r)

(1+α +α2)(1+5r)(2+8r)
Adding C1 to this gives

V1 =
2αv(1+ r)(1+α)

(1+α +α2)(1+5r)
for the value of the portfolio just before time 1 consumption in states ω1 and ω2.

In a similar fashion we compute

H1(2) =
α2v(1+ r)2(1−8r)

(1+α +α2)(3−5r)(1+4r)(2−4r)

H0(2) =
36α2vr

(1+α +α2)(3−5r)(1+4r)(2−4r)
and

V1 =
2αv(1+ r)(1+α)

(1+α +α2)(3−5r)
in states ω3 and ω4.

Finally, we compute the trading strategy that will replicate V1, giving

H1(1) =
α(1+α)(1+ r)(1−5r)v

(1+α +α2)(1+5r)(3−5r)
and

H0(1) =
2α(1+α)(−1+15r)v

(1+α +α2)(1+5r)(3−5r)
Notice that C0 +H0(1)+5H1(1) = v, as required.

Exercise 5.14. Use the martingale approach to show that with the isoelastic utility func-
tion u(c) = cγ/γ , γ < 1, γ 6= 0, the optimal consumption process is given by

Ct =
v
∆

α t/(1−γ)N1/(γ−1)
t

and the optimal objective value is given by vγ∆1−γ/γ , where

∆ =
T

∑
t=0

α1/(1−γ)E
[
Nγ/(γ−1)

t

]

Exercise 5.15. For the security model of example 5.1 with α ≤ 1, initial wealth v, con-
stant interest rate r ≥ 0, and isoelastic utility function u(c) = cγ/γ , use the risk neutral
computational approach to write algebraic formulas for the optimal consumption process
C. Compute numerical values for this process as well as the optimal trading strategy in
the special case γ =−1, α = 1, and r = 0.
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5.5 Maximum Utility From Consumption and Terminal Wealth

This section investigates the problem where utility is gained from both the consumption
each period as well as the amount of money that is dedicated at time T for subsequent
use. This is a modest generalization of the ordinary consumption-investment problem,
where now only a portion CT of the time T wealth VT is consumed, leaving VT −CT

for future investment. This new situation is equivalent to the ordinary consumption-
investment problem, except that the utility function for period T consumption is allowed
to be different from the utility function for the other periods. Not surprisingly, it is easy
to solve this generalized consumption-investment problem, using slight generalizations
of either the dynamic programming or the risk neutral computational approaches.

Throughout this section it will be assumed that there exists a unique risk neutral prob-
ability measure Q, so the model is complete. Let Av denote the set of all the admissible
consumption-investment plans with initial wealth V0 = v, so each (C,H) ∈ Av is self-
financing with C a non-negative, adapted process satisfying CT ≤VT .

For the generalized consumption-investment problem, two concave, increasing utility
functions are specified: uc measures the utility of consumption each period and satisfies
u(c) = −∞ for all c < 0 (for computational convenience we shall usually assume, in
addition, u′c(c)→∞ as c↘ 0), while up measures the utility of the funds that are reserved
at time T for the future, as in an ordinary optimal portfolio problem. The problem is to
choose the (C,H) ∈Av which maximizes the expected total utility, which is

E

[
T

∑
t=0

α tuc(Ct)+αT up(VT −CT )

]

We are also interested in the corresponding value function, which keeps track of the
optimal objective value as a function of the initial wealth v. This is denoted J(v) and is
given by

J(v) = max
(C,H)∈Av

E

[
T

∑
t=0

α tuc(Ct)+αT up(VT −CT )

]
(5.28)

With the dynamic programming approach we use (5.16), exactly the same recur-
sive functional equation as with the ordinary consumption-investment problem, for t =
1, . . . ,T , namely

ut−1(w) = max
C,H

{
uc(C)+αE

(
ut

(
(w−C)Bt/Bt−1 +Bt

N

∑
n=1

Hn∆S∗n(t)

)∣∣∣∣∣Ft−1

)}

where the maximum is taken over all Hn ∈Ft−1 for n = 1, . . . ,N and over all C ∈Ft−1.
As usual, the function ut(w) is to be interpreted as the maximum expected discounted
utility beginning at time t with wealth w, and so u0(w) = J(w). Moreover, after recur-
sively computing the ut functions, one obtains the optimal consumption-investment plan
by taking the maximizing values of H and C, beginning with t = 1.
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A crucial difference between the dynamic programming approach for the ordinary
consumption-investment problem and the one here is the specification of the terminal
utility function uT . In the former case one simply takes ut(w) = uc(w), because with
wealth w at time T the obvious thing to do is to consume everything. But now in this
situation one needs to optimally divide the wealth between immediate consumption and
terminal investment, which means one should take

uT (w) = max
0≤c≤w

{uc(c)+up(w− c)} (5.29)

Hence the dynamic programming approach for a problem featuring both consumption
and terminal wealth is essentially the same as for an ordinary consumption-investment
problem, except that the utility associated with time T consumption should be as in
(5.29) instead of uc.

Example 5.10. Suppose uc(c) = ln(c) and up(w) = wγ/γ with γ < 1 and γ 6= 0, so
uT (w) = max{ln(c)+(w−c)γ/γ}. A little calculus shows the maximizing c is a root of
the equation c = (w− c)1−γ . For instance, if γ =−1, then

c = w+1/2−
√

w+1/4 =
[√

w+1/4−1/2
]2

in which case

uT (w) = 2ln
(√

w+1/4−1/2
)
− 1√

w+1/4−1/2
= 2uc

(
g(w)

)
+up

(
g(w)

)

where g is the concave, increasing function g(w) =
√

w+1/4−1/2 with domain [0,∞).

Turning to the risk neutral computational approach, in view of (5.19) and (5.20) it
should be clear that the following holds:

Given the initial wealth v ≥ 0 and the admissible consumption-investment
plan (C,H), one has

v = EQ[C0/B0 + · · ·+CT−1/BT−1 +VT /BT ]

Conversely, if this equation holds and if C is a consumption process with
CT ≤ VT , then there exists a trading strategy H such that (C,H) is an ad-
missible consumption-investment plan with v≥ 0.

(5.30)

It follows that our optimization problem can be formulated as follows:

maximize E

[
T

∑
t=0

α tuc(Ct)+αT up(VT −CT )

]

subject to v = EQ [C0/B0 + · · ·+CT−1/BT−1 +VT /BT ]

VT ≥CT , VT ∈FT

C is an adapted process
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Our assumption that u′c(c)→ ∞ as c↙ 0 will guarantee that the maximizing consump-
tion process will satisfy Ct > 0 for all t. We will assume in addition that u′p(w) → ∞
as w ↙ 0, so that the constraint VT > CT will automatically be satisfied by the optimal
solution. In other words, with these assumptions about the utility functions it suffices to
work with the following formulation of the optimization problem:

maximize E

[
T

∑
t=0

α tuc(Ct)+αT up(VT −CT )

]

subject to v = EQ [C0/B0 + · · ·+CT−1/BT−1 +VT /BT ]

C is an adapted process

VT ∈FT

(5.31)

The optimal solution will immediately give a consumption process with Ct > 0 for all t
and with CT < VT . It follows from (5.30) that there exists a trading strategy H making
(C,H) an admissible consumption-investment plan which must be the solution of the
original optimization problem.

Problem (5.31) is solved with the same approach as was used with problem (5.21).
We introduce the Lagrange multiplier λ and the adapted process N defined by Nt =
E[L|Ft ]/Bt , thereby allowing us to rewrite (5.31) as

maximize E

[
T

∑
t=0

α tuc(Ct)+αT up(VT −CT )−λ
T−1

∑
t=0

CtNt −λVT NT

]

where the maximum is over stochastic processes C and random variables VT . Differenti-
ating with respect to each Ct and then VT , we see that the following first order necessary
conditions must be satisfied:

α tu′c(Ct) = λNt , t = 0, . . . ,T −1

α tu′c(CT ) = α tu′p(VT −CT ),

α tu′p(VT −CT ) = λNT

Introducing I(·), the inverse of the marginal utility function u′c(·), as well as Ip(·), the
inverse of the marginal utility function u′p(·), it follows that the optimal solution must
satisfy

Ct = Ic(λNt/α t), t = 0, . . . ,T,

VT = Ic(λNT /αT )+ Ip(λNT /αT )
(5.32)

for some positive value of the scalar λ . The correct value of λ is the one which satisfies
the constraint in (5.31) upon substitution of (5.32), namely,

E

[
T

∑
t=0

Ic(λNt/α t)Nt + Ip(λNT /αT )NT

]
= v (5.33)
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With this value of λ the optimal objective value is thus

J(v) = E

[
T

∑
t=0

α tuc
(
Ic(λNt/α t)+αT up

(
Ip(λNT /αT )

)
]

Example 5.10 (continued) Suppose uc(c) = ln(c) and up(w) = −1/w, so Ic(i) = 1/i
and Ip(i) = 1/

√
i. Hence (5.33) becomes

1
λ

T

∑
t=0

α t +
1√
λ

E
[√

NT αT
]

= v

and so the correct value of λ can be obtained by solving a simple quadratic equation.

We can sharpen these results if the utility functions are sufficiently differentiable.
Define f : (0,∞)→ (0,∞) by

f (λ ) = E

[
T

∑
t=0

Ic(λNt/α t)Nt + Ip(λNT /αT )NT

]

so equation (5.33) is the same thing as f (λ ) = v. With minor assumptions about the
utility functions, the function f will be continuous and strictly decreasing, in which case
it will have an inverse function, which will be denoted g. Thus f (λ ) = v if and only if
λ = g(v). In particular, the expressions in (5.32) for the optimal solution become

Ct = Ic
(
g(v)Nt/α t) , t = 0, . . . ,T

VT = Ic
(
g(v)NT /αT )

+ Ip
(
g(v)NT /αT )

and the optimal objective value J(v) = K
(
g(v)

)
, where we have introduced the function

K(λ )≡ E

[
T

∑
t=0

α tuc
(
Ic(λNt/α t)

)
+αT up

(
Ip(λNT /αT )

)
]

But

f ′(λ ) = E

[
T

∑
t=0

I′c(λNt/α t)N2
t /α t + I′p(λNT /αT )N2

T /αT

]

so

K′(λ ) = E

[
T

∑
t=0

α tu′c
(
Ic(λNt/α t)

) d
dλ

Ic(λNt/α t)+αT u′p
(
Ip(λNT /αT )

) d
dλ

Ip(λNT /αT )

]

= E

[
T

∑
t=0

α t(λNt/α t)
d

dλ
Ic(λNt/α t)+αT (λNT /αT )

d
dλ

Ip(λNT /αT )

]

= E

[
T

∑
t=0

α t(λNt/α t)2I′c(λNt/α t)+αT (λNT /αT )2I′p(λNT /αT )

]

= λ f ′(λ )



170 CHAPTER 5. OPTIMAL CONSUMPTION AND INVESTMENT PROBLEMS

It follows that
J′(v) = g(v)

because by standard rules of differential calculus

J′(v) = K′(g(v)
)
g′(v) = g(v) f ′

(
g(v)

)
g′(v) = g(v)

Notice that the g function will be positive and strictly decreasing, so we conclude
from these calculations that the value function J is strictly increasing and strictly con-
cave.

Exercise 5.16. For a simple single period model with one security with Ω = {ω1,ω2},
S0 = 4, S1(ω1) = 5, S1(ω2) = 3, α = 1 and constant interest rate r = 0, suppose the
utility functions are as in example 5.10 with γ = −1. Moreover, suppose P(ω1) =
2/3. Compute the optimal consumption process and trading strategy for the general-
ized consumption-investment problem of this section using:

(a) the dynamic programming approach,

(b) the risk neutral computational approach.

Exercise 5.17. Show that the g(v) functions corresponding to the isoelastic utility func-
tion u(w) = γ−1wγ for general values of the parameter γ , where −∞ < γ < 1 and γ 6= 0,
are given by

gc(v) = vγ−1

(
E

[
T

∑
t=0

Nγ/(γ−1)
t α t/(1−γ)

])1−γ

and
gp(v) = vγ−1

(
E

[
Lγ/(γ−1)Bγ/(1−γ)

T

])1−γ

for the ordinary consumption-investment and the ordinary optimal portfolio problems,
respectively.

Exercise 5.18. Show that if up(w) = ln(w), then g(v) = 1/v for an ordinary optimal
portfolio problem with uc = 0.

5.6 Optimal Portfolios With Constraints

The ideas in this section are, for the most part, straightforward generalizations of the
single period concepts in section 2.5. A non-empty, closed, convex subset K of RN

is specified, and the trading strategy, when expressed as the N-vector representing the
fractions of the wealth held in the risky securities, is required to be an element of K
at each time t. Examples of K are given in section 2.5. This constrained, multiperiod



5.6. OPTIMAL PORTFOLIOS WITH CONSTRAINTS 171

problem can be solved with either dynamic programming or a risk neutral computational
approach, as will now be discussed.

To be precise, trading strategies will be of the form F = (F1, . . . ,FN), where each Fn =
{Fn(t); t = 1, . . . ,T} is a predictable stochastic process with Fn(t) = Hn(t)Sn(t−1)/Vt−1

representing the fraction of the time t−1 wealth that is invested at that time in security
n and held until time t. Assuming the trading strategy is self-financing, it follows that
1−F1(t)− . . .−FN(t) is the fraction of time t − 1 wealth that is invested in the bank
account. In general, the value Fn(t) can be less than zero or greater than one. However,
with the specification of the constraint set K, for a trading strategy to be admissible it
is necessary that F(t) ∈K for t = 1, . . . ,T . Let A denote the set of all such admissible
trading strategies.

According to section 3.2, the time T value VT of the portfolio can be expressed as

VT = v
T

∏
t=1

[
1+ rt +

N

∑
n=1

Fn(t){∆Rn(t)− rt}
]

where v is the initial wealth, rt = (Bt −Bt−1)/Bt−1 is the interest rate associated with
the interval [t−1, t], and ∆Rn(t) = Rn(t)−Rn(t−1) is the change in the return process
associated with security n. With the specification of the utility function u and the initial
wealth v, the constrained optimal portfolio problem is:

maximize Eu(VT )

subject to F ∈A , V0 = v
(5.34)

The corresponding value function is

J(v)≡ sup
F∈A

Eu(VT )

This problem can be solved with dynamic programming by using recursively the
dynamic programming functional equation:

ut−1(w) = max
F∈K

E

[
ut

(
w

{
1+ rt +

N

∑
n=1

F{∆Rn(t)− rt}
})∣∣∣∣∣Ft−1

]

for t = 1,2, . . . ,T together with the boundary condition uT (w) = u(w). Thus ut(w) repre-
sents the maximum expected utility of terminal wealth when you start with initial wealth
w at time t and the information available is Ft . In particular, J(v) = u0(v). The dynamic
programming approach is illustrated in the following example.

Example 5.11. Consider the two-period, single security model in example 5.1 with the
interest rate rt = 0. Some relevant data are:

ω P(ω) ∆R1(ω) ∆R2(ω)
ω1 1/4 3/5 1/8
ω2 1/4 3/5 −2/8
ω3 1/4 −1/5 2/4
ω4 1/4 −1/5 −1/4
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Suppose the utility function u(w) = ln(w) and short selling of the risky security is pro-
hibited, so K = [0,∞). The dynamic programming equation for t = 2 and ω = ω1,ω2

is

u1(w) = max
F≥0

E
[

ln(w{1+F∆R2})|S1 = 8
]

= max
F≥0

{
1
2

ln
[
w(1+F/8)

]
+

1
2

ln
[
w(1−F/4)

]}

The argument is a concave function with respect to F , and its derivative at F = 0 is
negative, so the argument is maximized on [0,∞) at F = 0. Substituting this value gives
u1(w) = ln(w) for ω1 and ω2.

The dynamic programming equation for t = 2 and ω = ω3,ω4 is

u1(w) = max
F≥0

{
1
2

ln
[
w(1+F/2)

]
+

1
2

ln
[
w(1−F/4)

]}

The argument here is concave with respect to F , but the derivative at F = 0 is positive,
so the argument is maximized on [0,∞) where the derivative equals 0. This is easily
computed to be F = 1, giving by substitution

u1(w) = ln(3)− 3
2

ln(2)+ ln(w)

for ω3 and ω4.
The dynamic programming equation for t = 1 is

u0(w) = max
F≥0

E
[
u1(w{1+F∆R1})

]

= max
F≥0

{
1
2

ln
[
w(1+3F/5)

]
+

1
2

(
ln(3)− 3

2
ln(2)+ ln

[
w(1−F/5)

])}

The maximizing value of F is found, as above, to be F = 5/3, and substitution gives the
value function

u0(v) = J(v) = ln(v)+
1
4

ln(2)

In summary, the optimal strategy is to invest 5v/3 dollars in the risky security at time
0 (since S0 = 5, this means one should buy v/3 units or shares), borrowing 2v/3 dollars
from the bank. If S1 = 8, then at time 1 the portfolio will be worth 2v dollars; all of this
should be held in the bank account until time 2, ending up with 2v dollars in both states
ω1 and ω2. If S1 = 4, then at time 1 the portfolio will be worth 2v/3 dollars. In this case
it is optimal to invest exactly this sum in the risky security (that is, go long v/6 units),
taking no position with the bank. Hence one will end up with v and v/2 dollars in states
ω3 and ω4, respectively.

The risk neutral computational approach for the constrained, multiperiod problem is
very similar to the approach for the single period problem, with one important excep-
tion: the scalar parameter v will now be a predictable stochastic process. As before, the



5.6. OPTIMAL PORTFOLIOS WITH CONSTRAINTS 173

support function δ (x) : RN ∪{+∞} of K is convex and defined by

δ (x)≡ sup
F∈K

(−Fx′)

The effective domain of δ is the convex cone K̃ ≡ {x ∈ RN : δ (x) < ∞}. It will be
assumed that K is such that δ is continuous on K̃. In addition, it will be assumed 0 ∈K
so δ ≥ 0. Examples of δ and K̃ are given in section 2.5.

We now introduce a predictable stochastic process κ = {κ(t); t = 1, . . . ,T} which
is required to satisfy κ(t) ∈ K̃ for all t ≥ 1. Thus κ(t,ω) will be an N-vector; its nth
component will correspond to the nth risky security, as will be shown in a moment. Let
N denote the set of all such processes κ .

We next define an auxiliary market Mκ for each κ ∈ N by modifying the return
processes for the bank account and the risky securities according to

rt → rt +δ
(
κ(t)

)
, t ≥ 1

∆Rn(t)→ ∆Rn(t)+δ
(
κ(t)

)
+κn(t), n = 1, . . . ,N; t ≥ 1

For each such market, let Qκ denote a corresponding risk neutral probability measure,
if one exists. Notice that the market M0 with κ = 0 is the same as the original market,
since δ (0) = 0. It will usually be the case that Qκ exists and is unique, in which case a
unique Qκ will also exist for all κ ∈N in some neighborhood of κ = 0, by the assumed
continuity of δ (·).

For the market Mκ and any trading strategy F , whether it is admissible or not, the
time T value of the portfolio is

V κ
T = v

T

∑
t=1

[
1+ rt +δ (κt)+

N

∑
n=0

Fn(t){∆Rn(t)+κn(t)− rt}
]

= v
T

∑
t=1

[
1+ rt +δ (κt)+

N

∑
n=0

Fn(t){∆Rn(t)− rt}+δ (κt)+F(t)κ ′t

] (5.35)

where the scalar F(t)κ ′t denotes the inner product of the row vector (t) with the column
vector κ ′t .

For each κ ∈N we shall be interested in the unconstrained optimal portfolio prob-
lem:

maximize Eu(V κ
T )

subject to V0 = v

In other words, this is the ordinary optimal portfolio problem for the market Mκ . Let
Jκ(v) denote the corresponding optimal objective value.

Consider an arbitrary market Mκ with κ 6= 0. As with the single period case, if
F(t) ∈ K for all t, then by the definition of δ (·) one has δ (κt)+ F(t)κ ′t ≥ 0 for all ω
and t, in which case by (5.35) V κ

T ≥ V 0
T for all ω ∈ Ω. On the other hand, if F(t) 6∈ K

for some t, then δ (κt)+ F(t)κ ′t ≥ 0 might not hold for all ω and t, in which case one
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might have V κ
T < V 0

T for some ω ∈ Ω. In particular, if F(t) 6∈ K for some t, then it is
possible to have Eu(V κ

T ) < Eu(V 0
T ). For this reason, it is possible to have Jκ(v) < J0(v)

for some κ ∈N , that is, the optimal objective value for the unconstrained problem in
some of the auxiliary markets may be strictly less than the optimal objective value for
the unconstrained problem in the original market.

Now for an arbitrary market Mκ with κ 6= 0, it is clear that Jκ(v), the optimal objec-
tive value for the unconstrained problem. is greater than or equal to the optimal objective
value for the constrained problem (because if you add constraints, then the optimal ob-
jective value, which is being maximized, will not increase).

Meanwhile, suppose F(t) denotes the optimal trading strategy for the original con-
strained problem, which has optimal objective value J(v). By (5.35) we have V 0

T ≤V κ
T ,

in which case J(v) = Eu(V 0
T ) ≤ Eu(V κ

T ). But the right hand side of this inequality will
be less than or equal to the optimal objective value for the constrained problem in the
market Mκ .

Putting together the inequalities of the two preceding paragraphs, we thus have

J(v)≤ Jκ(v), all κ ∈N (5.36)

If this is an equality for some κ ∈ N , then the optimal F corresponding to the right
hand side is a candidate as the solution of the original constrained problem, because of
the following generalization of principle (2.49):

Suppose for some κ̂ ∈N that F , the optimal trading strategy for the un-
constrained portfolio problem in the market Mκ̂ , satisfies

(a) F ∈A (i.e., F(t) ∈K for all t ≥ 1)

(b) δ
(
κ̂(t)

)
+F(t)κ̂ ′(t) = 0, all t ≥ 1

Then F is optimal for the constrained problem in the original market M0

and J(v) = Jκ̂(v)≤ Jκ(v) for all κ ∈N .

(5.37)

To see this, note by expression (5.35) for V κ
T that W , the attainable wealth under F in

the market Mκ̂ , is also the attainable wealth under F in the original market M0. Since F
is feasible for the constrained problem, it follows that Eu(w)≤ J(v). But Eu(w) = Jκ̂(v),
so by (5.36) we must have Eu(w) = J(v) = Jκ̂(v)≤ Jκ(v) for all κ ∈N .

In summary, with the risk neutral computational approach you first solve the dual
problem

min
κ∈N

Jκ(v)

If κ̂ denotes the optimal solution, then the optimal trading strategy for the unconstrained
problem in the market Mκ̂ will be the candidate for the solution of the constrained prob-
lem in the original market M0. All that remains is to verify that this strategy satisfies
the two conditions in (5.37). Perhaps surprisingly, this procedure is usually efficient and
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successful; an explanation of why this is so is rather difficult and will not be given here.

Example 5.11 (continued) For this single risky security, two-period model with the
no short selling constraint K= [0,∞), one has

δ (X) =

{
0, x≥ 0

∞, x < 0

and K̃= [0,∞). The set N of admissible predictable processes will be all κ of the form

κt(ω) =





κ5, t = 1

κ8, t = 1, ω = ω1,ω2

κ4, t = 2, ω = ω3,ω4

where κ5, κ8 and κ4 are non-negative scalars. Since δ (x) = 0 for all x ∈ K̃, the interest
rate process in the market Mκ is the same as the interest rate process in the market M0,
which is taken to be r1 = r2 = 0. Hence the bank account process Bκ

t = 1 for all t and
all κ ∈N .

The return process Rκ
t for the risky security will vary with κ ∈ N . This is shown

below, along with the risk neutral probability measure Qκ and the state price density Lκ :

ω ∆Rκ
1 (ω) ∆Rκ

2 (ω) Qκ(ω) Lκ(ω)

ω1 3/5+κ5 1/8+κ8 (1−5κ5)(2−8κ8)
12

(1−5κ5)(2−8κ8)
3

ω2 3/5+κ5 −1/4+κ8 (1−5κ5)(1+8κ8)
12

(1−5κ5)(1+8κ8)
3

ω3 −1/5+κ5 1/2+κ8 (3+5κ5)(1−4κ4)
12

(3+5κ5)(1−4κ4)
3

ω4 −1/5+κ5 −1/4+κ8 (2+5κ5)(1−4κ4)
12

(3+5κ5)(2+4κ4)
3

The optimal attainable wealth and the value function for the unconstrained problem
in the market Mκ are given respectively by

Wκ = v/Lκ =





3v
(1−5κ5)(2−8κ8) , ω = ω1,

3v
(1−5κ5)(1+8κ8) , ω = ω2,

3v
(3+5κ5)(1−4κ4) , ω = ω3,

3v
(3+5κ5)(2+4κ4) , ω = ω4

and

Jκ(v) = ln(v)−E ln(Lκ)

= ln(v)− 1
4

ln
(

(1−5κ5)(2−8κ8)
3

)
− 1

4
ln

(
(1−5κ5)(1+8κ8)

3

)

− 1
4

ln
(

(3+5κ5)(1−4κ4)
3

)
− 1

4
ln

(
(3+5κ5)(2+4κ4)

3

)
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Hence the dual problem is:

maximize 2ln(1−5κ5)+2ln(3+5κ5)+ ln(2−8κ8)

+ ln(1+8κ8)+ ln(1−4κ4)+ ln(2+4κ4)

subject to κ5 ≥ 0, κ8 ≥ 0, κ4 ≥ 0

The optimal solution of this is easily found to be

κ5 = 0, κ8 =
1

16
, κ4 = 0

Substituting these values in the above expressions for Wκ and Jκ(v) gives

Wκ =





2v, ω = ω1,ω2

v, ω = ω3

v/2, ω = ω4

and Jκ(v) = ln(v) + ln(2)/4 (Note these are the same values that were obtained with
dynamic programming). The replicating trading strategy is F1 = 5/3; F2 = 0 if ω =
ω1,ω2; and F2 = 1 if ω = ω3,ω4. The two conditions in (5.36) are clearly satisfied, so
this must be the optimal strategy for the constrained problem.

Exercise 5.19. For the security model in example 5.11 with r = 0 and log utility, suppose
short selling is allowed but you cannot borrow money from the bank. Solve this optimal
portfolio problem with:

(a) dynamic programming (Hint: show u0(v) = ln(v)+ ln(6/5))

(b) the risk neutral computational approach (Hint: show the optimal solution of the dual
problem is κ(1) =− 1

15 and κ(2) = 0).

5.7 Optimal Consumption-Investment With Constraints

It is straightforward to take the optimal consumption-investment model of sections 5.3
and 5.4, add constraints on the admissible trading strategies, and solve the resulting
problem with either dynamic programming or a risk neutral computational approach.
Indeed, there is no problem extending these ideas to the model studied in section 5.5,
where multiperiod consumption/investment is combined with terminal wealth. All this
will be explained in this section.

As in section 5.6, the trading strategies are predictable and of the form F =(F1, . . . ,FN),
with Fn(t) representing the fraction of the time t−1 wealth that is invested at that time
in security n and held until time t. A non-empty, closed, convex subset K of RN is
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specified, and it is required that F(t) ∈ K for t = 1, . . . ,T . A consumption process
C = {Ct ; t = 0, . . . ,T} is an adapted, non-negative stochastic process with Ct represent-
ing the amount of funds consumed by the investor at time t. A consumption-investment
plan consists of a pair (C,F), where C is a consumption process and F is a trading
strategy.

As usual, the consumption-investment plan (C,F) will be called self-financing if no
money is added to or withdrawn from the portfolio between times 0 and T , other than
the amounts that are consumed. With Vt denoting the value of the portfolio just before
any time t transactions or consumption, for self-financing plans it means that

Vt = (Vt−1−Ct−1)

[
1+ rt +

N

∑
n=1

Fn(t){∆Rn(t)− rt}
]

(5.38)

for t = 1, . . . ,T , where rt = (Bt − Bt−1)/Bt−1 is the interest rate associated with the
interval (t − 1, t) and ∆Rn(t) = Rn(t)− Rn(t − 1) is the change in the return process
for security n. A consumption-investment plan will be called admissible if it is self-
financing and VT ≥ CT . Since consumption processes are non-negative, this implies
VT ≥ 0. Let Av denote the set of all admissible consumption-investment plans with
initial wealth v.

With the specification of the initial wealth v, the discount parameter satisfying 0 <

α ≤ 1, and the concave, increasing utility function u, the investor’s consumption-investment
problem is:

maximize E

[
T

∑
t=0

α tu(Ct)

]

subject to (C,F) ∈Av

(5.39)

The corresponding value function is

Jv = sup
(C,F)∈Av

E

[
T

∑
t=0

α tu(Ct)

]

Note that (5.39) is the same as problem formulation (5.14) in section 5.3, except that
implicit is the added requirement that F(t) ∈K for all t.

This problem can be solved by using recursively the dynamic programming functional
equation

ut−1(w)= max
F∈K

0≤c≤w

{
u(c)+αE

[
ut

(
(w− c)

{
1+ rt +

N

∑
n=1

Fn(t){∆Rn(t)− rt}
})∣∣∣∣∣Ft−1

]}

for t = 1,2, . . . ,T together with the boundary condition uT (w) = u(w). Thus ut(w) rep-
resents the maximum expected utility of consumption from time t onwards when you
start with initial wealth w at time t and the information available is Ft . Moreover,
J(v) = u0(v). With the common assumption that u′(0) = ∞, the explicit constraint 0≤C
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can be eliminated, thereby simplifying the computations. The dynamic programming
approach is illustrated in the following example.

Example 5.12. Consider the two-period, single security model in example 5.1 with
interest rate rt = 0, the same situation as in example 5.11. Suppose the utility func-
tion u(c) = −c−1 and short selling of the risky security is prohibited, so K = [0,∞).
With P(ω1) = · · · = P(ω4) = 1/4, the dynamic programming equation for t = 2 and
ω = ω1,ω2 is

u1(w) = max
F≥0

0≤c≤w

{
−1

c
−αE

[
1

(w− c)(1+F∆R2)

∣∣∣∣S1 = 8
]}

= max
F≥0

0≤c≤w

{
−1

c
− α

2(w− c)(1+F/8)
− α

2(w− c)(1−F/4)

}

Computing the partial derivative of the argument with respect to F and setting this equal
to zero gives

F =
8−8

√
2

2+
√

2
< 0

But this violates the short-selling constraint, so take F = 0 and substitute this into the
above dynamic programming equation, giving

u1(w) = max
0≤c≤w

{
−1

c
− α

w− c

}

Setting the derivative of the argument with respect to c equal to zero, easily obtains
C = w/(1+

√
α) for the optimal consumption quantity and

u1(w) =−(1+
√

α)2

w
, ω = ω1,ω2

for the maximum expected utility.
For t = 2 and ω = ω3,ω4 the dynamic programming equation is

u1(w) = max
F≥0

0≤c≤w

{
−1

c
− α

2(w− c)(1+F/2)
− α

2(w− c)(1−F/4)

}

Setting to zero the partial derivative with respect to F leads to

F =
4
√

2−4
2+

√
2

> 0

which satisfies the short-selling constraint. Substituting this into the dynamic program-
ming equation yields

u1(w) = max
0≤c≤w

{
−1

c
− α(1+

√
2)2

6(w− c)

}
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Hence the optimal consumption quantity is C = w/(1 +
√

α1) and the maximum ex-
pected utility is

u1(w) =−(1+
√

α1)2

w
ω = ω3,ω4

where for convenience the new parameter

α1 =
α(1+

√
2)2

6

has been introduced.
For t = 1 the dynamic programming equation is

u0(w) = max
F≥0

0≤c≤w

{
−1

c
− α(1+

√
α)2

2(w− c)(1+3F/5)
− α(1+

√
α1)2

2(w− c)(1−F/5)

}

Setting the partial derivative of the argument with respect to F equal to zero leads to

F =
5
[√

3(1+
√

α)−1−√α1
]

√
3(1+

√
α)+3+3

√
α1

This is easily verified to be positive, so the short-selling constraint is satisfied. Substi-
tuting this back into the dynamic programming equation gives

u0(w) = max
0≤c≤w

{
−1

c
− α0

w− c

}

where for convenience the new parameter

α0 =
α
8

[
1+

√
α +

√
3+

√
3α1

]2

has been introduced. Hence C = w/(1+
√

α0) is the optimal time-0 consumption quan-
tity and

J(v) = u0(v) =−(1+
√

α0)2

v
is the value function for the original problem.

The risk neutral computational approach for the multiperiod consumption-investment
problem is essentially the same as for the multiperiod optimal portfolio problem. The
support function δ (x) : RN → R∪{+∞} of −K is defined by

δ (x)≡ sup
F∈K

(−Fx)

the effective domain of which is the convex cone K̃ ≡ {x ∈ RN : δ (x) < ∞}. It will be
assumed that K is such that δ is continuous on K̃ with 0 ∈K.

Let N denote the set of all predictable stochastic processes κ = {κ(t) : t = 1, . . . ,T}
satisfying κ(t) ∈ K̃ for all t. For each κ ∈N one defines an auxiliary market Mκ by
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modifying the return processes for the bank account and the risky securities according
to

rt → rt +δ
(
κ(t)

)
t ≥ 1

∆Rn(t)→ ∆Rn(t)+δ
(
κ(t)

)
+κn(t) n = 1, . . . ,N; t ≥ 1

For each such market, let Qκ denote a corresponding risk neutral probability measure.
It will usually be the case that Q = Q0 exists and is unique, in which case a unique Qκ
will also exist for all κ ∈N in some neighborhood of κ = 0.

For the market Mκ and any self-financing consumption plan (C,F), whether it is
admissible or not, the self-financing equation (5.38) becomes

Vt = (Vt−1−Ct−1)

[
1+ rt +

N

∑
n=1

Fn(t){∆Rn(t)− rT}+δ (κt)+F(t)κ ′t

]
(5.40)

where the scalar F(t)κ ′t denotes the inner product of the row vector F(t) with the column
vector κ ′(t) = κ ′t . Notice that the market M0 with κ = 0 is the same as the original
market.

For each κ ∈N we shall be interested in the unconstrained consumption-investment
problem:

maximize E

[
T

∑
t=0

α tu(Ct)

]

subject to V0 = v, Vt ≥CT

V, C, F satisfy (5.40) for t ≥ 1

(5.41)

In other words, this is the ordinary consumption-investment problem for the market
Mκ , with no special constraints on the values of F . Let Jκ(v) denote the corresponding
optimal objective value.

As we saw for constrained optimal portfolio problems in section 5.6,

J(v)≤ Jκ(v), all κ ∈N (5.42)

that is, the optimal objective value for the original constrained problem is Less than
or equal to the optimal objective value for the unconstrained problem in market Mκ ,
provided κ ∈ N . This is because if (C,F) is feasible for (5.39), then (5.40) together
with δ (κt)+ F(t)κ ′t ≥ 0 imply (C,F) is also feasible for (5.41). Hence if (5.42) is an
equality for some κ ∈N , then the optimal (C,F) corresponding to this v is a candidate
for the solution of the original constrained problem, because of the following counterpart
of (5.37) (which is true by exactly the same kind of logic):
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Suppose for some κ̂ ∈N that (C,F), the optimal consumption-investment
plan for the unconstrained consumption-investment problem in the market
Mκ̂ , satisfies

(a) (C,F) ∈Aκ

(b) δ (κ̂t)+F(t)κ̂ ′t ≥ 0, all t ≥ 1

Then (C,F) is optimal for the original constrained consumption-investment
problem, and J(v) = Jκ̂(v)≤ Jκ(v) for all κ ∈N .

(5.43)

In summary, to solve the constrained consumption-investment problem with the risk
neutral computational approach, you first solve the dual problem of minimizing the right
hand side of (5.42) over κ ∈N . This will be illustrated in the following example.

Example 5.12 (continued) Since K = [0,∞) and the original markets are the same,
the auxiliary markets Mκ will be the same as in example 5.11. In particular, the set N ,
the notation for the processes κ , the return processes Rκ , and the risk neutral probability
measures Qκ are given in section 5.6.

In order to solve the unconstrained problem (5.41) for each κ ∈N , it is necessary
to introduce for each κ the process Nκ corresponding to N of (5.22); this is given below
(recall Bκ

t = 1 for all t):

ω Nv
0(ω) Nv

1(ω) Nv
2(ω)

ω1 1 (1−5κ5)/2 (1−5κ5)(2−8κ8)/3
ω2 1 (1−5κ5)/2 (1−5κ5)(1+8κ8)/3
ω3 1 (3+5κ5)/2 (3+5κ5)(1−4κ4)/3
ω4 1 (3+5κ5)/2 (3+5κ5)(2+4κ4)/3

By exercise 5.14, the optimal objective value for the unconstrained problem (5.41) is
given by

Jκ =−∆2

v
where

∆ =
2

∑
t=0

α t/2E
[√

Nκ
t

]

Hence the dual problem amounts to maximizing ∆2 over all κ ∈ N , that is, over all
non-negative, predictable κ . With a little bit of work, the solution is found to be

κ̂5 = 0, κ̂8 =
1

16
, κ̂4 = 0

giving the corresponding value

∆ = 1+
√

α
2
√

2

[
1+

√
3
]
+

α
4

[
1+2

√
2
]
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Note that this value of ∆ gives, after a little algebra, Jκ̂(v) =−(1+
√

α0)2/v, the same as
the optimal objective value for the original constrained consumption-investment prob-
lem, as computed earlier with dynamic programming.

Since Nκ
1 (ω1) = Nκ

1 (ω2) = 1/2, Nκ
1 (ω3) = Nκ

1 (ω4) = 3/2, Nκ
2 (ω1) = Nκ

2 (ω2) = 1/2,
Nκ

2 (ω3) = 1 and Nκ
2 (ω4) = 2, exercise 5.14 also gives C1(ω1) = C1(ω2) = v

√
2α/∆,

C1(ω3) = C1(ω4) = v
√

2α/3/∆, C2(ω1) = C2(ω2) = vα
√

2/∆, C2(ω3) = vα/∆, and
C2(ω4) = vα/(∆

√
2).

To compute the replicating trading strategy, we begin by noting that C2(ω1) =C2(ω2)
implies F2(ω1) = F2(ω2) = 0 for the optimal fraction of the available funds that are
invested in the risky security at time 1. It follows that

V1(ω) = C1(ω)+C2(ω) =
v
∆

[
α
√

2+
√

2α
]
, ω = ω1,ω2

Next, solving

(V1−C1)(1+F/2) = vα/∆
(V1−C1)(1−F/4) = vα/(∆

√
2)

gives

F2(ω3) = F2(ω4) =
4(
√

2−1)
2+

√
2

and

V1(ω3) = V1(ω4) =
v
∆

[
α(2+

√
2)

3
√

2
+
√

2α√
3

]

Finally, solving

(V0−C0)(1+3F/5) =
v
∆

[
α
√

2+
√

2α
]

(V0−C0)(1−F/5) =
v
∆

[
α(2+

√
2)

3
√

2
+
√

2α√
3

]

gives the same value for F1 as was obtained with dynamic programming.

Needless to say, the preceding ideas can be combined with the ideas of section 5.6 to
solve the section 5.5 kind of problem where there is utility from both consumption and
terminal wealth. In particular, you can use either dynamic programming (see exercise
5.20) or the risk neutral computational approach that will now be explained.

With Av the set of admissible consumption-investment plans with initial wealth v and
F satisfying the constraint K, we are interested in the value function

J(v) = max
(C,F)∈Av

E

[
T

∑
t=0

α tuc(Ct)+αT up(VT −CT )

]
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where uc and up are two specified utility functions, as in section 5.5. This is the same as
(5.28), and this corresponds to exactly the same optimization problem as in section 5.5,
only now the constraint F(t) ∈K is implicit.

We now define the auxiliary markets Mκ exactly the same as for the constrained op-
timal portfolio problem of section 5.6 and as the constrained consumption-investment
problem studied earlier in this section. The set N of predictable processes κ , the modi-
fied return processes, and so forth will depend on K and the original security model, but
they will be independent of the utility functions and whether uc or up equals zero.

Next, for each κ ∈N we wish to consider the “unconstrained” optimization problem:

maximize E

[
T

∑
t=0

α tuc(Ct)+αT up(VT −CT )

]

subject to V0 = v, VT ≥CT

V, C, F satisfy (5.40) for t ≥ 1

This is the same as (5.41), only now there is the additional term associated with the
utility of terminal wealth. In particular, this is the same as the optimization problem of
section 5.5 for the market Mκ , with no special constraints on the values of F . Thus
Jκ(v), the corresponding optimal objective value, can be computed with the methods of
that section.

Finally, we solve the dual problem of minimizing Jκ(v) over κ ∈N . If κ̂ ∈N is
the minimizing value and (Ĉ, F̂) is the corresponding optimal consumption-investment
plan, then it only remains to check the two conditions in (5.43) in order to conclude that
(Ĉ, F̂) is also the optimal solution for the original constrained optimization problem.

Example 5.13. Consider the two-period, single security model in example 5.1 with in-
terest rate rt = 0. This is the same situation as in examples 5.11 and 5.12, except now it
is assumed that uc(c) = ln(c) and up(w) = ln(w). The auxiliary markets Mκ , including
the processes Nκ , are the same as in example 5.12.

In view of section 5.5, the optimal solution for the unconstrained problem is of the
form Ct = α t/(λNκ

t ) and V2 = 2α2/(λNκ
2 ), where the process Nκ depends on the

underlying market Mκ . Since f (λ ) = (1 + α + 2α2)/λ , it follows that λ = g(v) =
(1+α +2α2)/v and

Ct =
α tv

(1+α +2α2)Nκ
t

V2 =
2α2v

(1+α +2α2)Nκ
2

Moreover, since

K(λ ) =−(1+α +2α2) lnλ +(α +4α2) lnα−αE lnNκ
1 −2α2E lnNκ

2

it follows from Jκ(v) = K(g(v)) that

Jκ(v) = (1+α +2α2) ln
(

v
1+α +2α2

)
+(α +4α2) lnα−αE lnNκ

1 −2α2E lnNκ
2
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Now upon substituting Nκ (see example 5.12), it is apparent the dual problem amounts
to maximizing

(α/2+α2)
[
ln(1−5κ5)+ ln(3+5κ5)

]
−α ln(2)−2α2 ln(3)

+
α2

2
[
ln(2−8κ8)+ ln(1+8κ8)+ ln(1−4κ4)+ ln(2+4κ4)

]

over non-negative values of the scalars κ4, κ5 and κ8. The optimal solution is easily
found to be κ4 = κ5 = 0, κ8 = 1/16. The corresponding process Nκ is

Nκ
1 (ω) =

{
1/2, ω1, ω2

3/2, ω3, ω4
Nκ

2 (ω) =





1/2, ω1, ω2

1, ω3

2, ω4

in which case C0 = v/(1+α +2α2),

C1(ω) =





2αv
1+α +2α2 , ω1, ω2

2αv/3
1+α +2α2 , ω3, ω4

C2(ω) =





2α2v
1+α +2α2 , ω1, ω2

α2v
1+α +2α2 , ω3

α2v/2
1+α +2α2 , ω4

and V2 = 2C2. After computing the replicating trading strategy F , one verifies that the
two conditions in (5.43) are satisfied, which means this consumption-investment plan
must be optimal for the constrained problem. The optimal objective value J(v) is

(1+α +2α2) ln
(

v
1+α +2α2

)
+(α +4α2) lnα +(α +α2/2) ln2− α

2
ln3

Exercise 5.20. Use dynamic programming to compute the optimal trading strategy F
for the problem in example 5.13. Show that F1 = 5/3, F2(ω) = 0 when ω = ω1,ω2, and
F2(ω) = 1 when ω = ω3,ω4. Verify that you get the same value for J(v) as in example
5.13.

5.8 Portfolio Optimization in Incomplete Markets

In view of section 2.6 and the themes of this chapter, there are three principal approaches
to solving optimal portfolio and consumption-investment problems when the underly-
ing securities market is incomplete: dynamic programming, the convex optimization
approach using Lagrange multipliers as in sections 5.2 and 5.4, only with multiple con-
straints and multiple risk neutral probability measures, and an approach featuring aug-
mented fictitious securities coupled with constraints on the trading strategies. These
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three approaches are straightforward extensions of principles studied earlier in this chap-
ter, so the emphasis will be on the presentation of an example, with redundant explana-
tions kept to a minimum.

The dynamic programming approach for incomplete markets is exactly the same as
for complete markets. The computational requirements depend primarily on the number
of periods, the number of nodes in the information tree, and the number of securities,
but not on whether the market is complete. It is largely a matter of taste whether one
chooses the trading strategy in terms of the units held of each security (i.e., H) or in
terms of the fractions of wealth allocated among the securities (i.e., F).

Example 5.14. The incomplete securities market model is the same as example 4.10,
namely, K = 5, N = 1, r = 0, the filtration Ft is generated by the price process S, and
the specifications of S, the underlying probability measure P, and the family of risk
neutral probability measures Q are:

ω S0 S1 S2 ∆R(1) ∆R(2) P Q
ω1 5 8 9 3/5 1/8 1/5 q/4
ω2 5 8 7 3/5 −1/8 1/5 (2−3q)/4
ω3 5 8 6 3/5 −1/4 1/5 (2q−1)/4
ω4 5 4 6 −1/5 1/2 1/5 1/4
ω5 5 4 3 −1/5 −1/4 1/5 1/2

The parameter q here is any scalar satisfying 1/2 < q < 2/3. The objective will be to
maximize expected utility of terminal wealth given the log utility function u(w) = ln(w).

With trading strategies expressed as the fraction F of wealth held in the risky security,
the dynamic programming functional equation is:

ut(w) = max
F

E
[
ut+1

(
w{1+F∆R(t +1)})|Ft

]

Taking u2(w) = ln(w) when t = 1 and ω = ω1, ω2 or ω3 this is

ut(w) = max
F

1
3
[

ln(w{1+F/8})+ ln(w{1−F/8})+ ln(w{1−F/4})]

Notice this utility function forces the time t = 2 wealth to be positive, so one has the
implicit constraint −8 < F < 4. Computing the derivative of the argument with respect
to F , the necessary condition leads to the quadratic equation 3F2− 8F − 64 = 0. This
equation has two roots, but only one falls in the interval (−8,4), so

F =
4
3
(1−

√
13)∼=−3.4741

Substituting this back into the dynamic programming equation eventually leads to u1(w)=
ln(w)+ k8, where for convenience I have introduced the scalar

k8 =
1
3

ln
[(

7−
√

13
)(

5+
√

13
)(

4+2
√

13
)]
− ln6∼= 0.0703
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In a similar fashion one computes for t = 1 and ω = ω4 or ω5 the optimal fraction
F = 1 and u1(w) = ln(w) + k4, where k4 is another new scalar given by k4 = ln(3)−
(3/2) ln(2)∼= 0.0589.

Turning to the dynamic programming equation for t = 0, one has

u0(w) = max
F

{
3
5
[

ln(w{1+3F/5})+ k8
]
+

2
5
[

ln(w{1−F/5})+ k4
]}

It follows in the usual manner that the optimal fraction is F = 7/3 and that the optimal
value function J(v) = u0(v) = ln(v)+ k5 where

k5 =
1
5

ln(3)+
12
5

ln(2)− ln(5)+
3
5

k8 +
2
5

k4 ∼= 0.3397

Starting with v dollars and implementing the optimal values of F that were just com-
puted, one ends up with the terminal wealth

V2 =





2v(7−√13)/5, ω = ω1

2v(5−√13)/5, ω = ω2

4v(2+
√

13)/5, ω = ω3

4v/5, ω = ω4

2v/5, ω = ω5

The second computational approach, which for convenience will be called the La-
grange multiplier approach, is essentially the same as for single period models (see sec-
tion 2.6). One starts with the standard convex optimization problem (2.50), which now
features two or more constraints. Each constraint corresponds to a risk neutral proba-
bility measure, and there are enough such risk neutral probability measures to form a
“basis” for the set of all risk neutral probability measures. Since there will be one La-
grange multiplier corresponding to each constraint, the amount of computational work
will go up, compared to a model for complete markets. This is because a system of
equations (one equation for each constraint) will need to be solved to compute the cor-
rect value of these Lagrange multipliers.

Example 5.14 (continued) Two risk neutral probability measures suffice to comprise a
basis for the set of risk neutral probability measures. Indeed, one can take, as I shall, the
extreme points of the closure of this set, corresponding to the parameter values q = 1/2
and q = 2/3:

Q(1) = (1/8,1/8,0,1/4,1/2) Q(2) = (1/6,0,1/12,1/4,1/2)

The corresponding state price vectors are:

L1 = (5/8,5/8,0,5/4,5/2) L2 = (5/6,0.5/12,5/4,5/2)
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The optimization problem we need to solve is:

maximize E[ln(W )]

subject to EQ(1)[W ] = v

EQ(2)[W ] = v

Proceeding in the usual way, we introduce the Lagrange multipliers λ1 and λ2 and use
the inverse of the marginal utility function to derive the following expression for the
terminal (time t = 2) wealth:

W (ω) =
1

λ1L1(ω)+λ2L2(ω)

The correct values of the Lagrange multipliers are obtained by solving the system:

EQ(1)

[
1

λ1L1 +λ2L2

]
= v

EQ(2)

[
1

λ1L1 +λ2L2

]
= v

The solution is:
λ1 =

4
v(5+

√
13)

λ2 =
3

v(2+
√

13)

Substitution in the above expression for W (ω) gives the same values as were computed
earlier with dynamic programming.

The basic idea of the third approach is the same as with the single period model of
section 2.6: first add one or more fictitious securities in such a way as to make the risk
neutral probability measure unique. Then solve the portfolio optimization problem with
the constraint that precludes trading in the fictitious securities.

To add the fictitious securities, a good approach is to work with return processes and
the information tree, constructing the fictitious securities by proceeding from one node
to the next. If the conditional risk neutral probabilities at a node are not unique, then add
one or more (one-period) fictitious securities to that node so as to make these conditional
probabilities unique. The analysis at any one node is equivalent to that for a single period
problem.

As one proceeds through the tree, it may turn out that different nodes require the addi-
tion of different numbers of fictitious securities. In fact, some nodes may not require any.
So after the initial pass through the network, note the maximum number of additional fic-
titious securities that are required. This becomes the number needed to add to the overall
multiperiod problem. It is then necessary to go back to the nodes where less than this
maximum number were defined and add some more (one-period) fictitious securities, as
necessary, so as to bring the total number up to the maximum. In order to preserve the
arbitrage-free property of the securities market, these additional (one-period) securities
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will need to be ‘locally redundant,’ that is, linear combinations of the (one-period) se-
curities that are already specified at that same node. For convenience, these additional
(one-period) securities that are defined in this ‘topping-up’ phase should be linear com-
binations of the original securities but not of any fictitious (one-period) securities that
may have been defined during the initial pass through the information tree.

At this stage the same number of (one-period) fictitious securities will have been
defined, in terms of their return processes, at each node of the information tree. There
will also be a unique risk neutral conditional probability measure at each node. By
specifying their time t = 0 values, the full specifications of all the (multiperiod) fictitious
securities can now be synthesized. And the unique risk neutral probability measure for
the overall multiperiod model can readily be computed.

Suppose there is a total of N securities, with the original ones indexed n = 1,2, . . . , n̂
and the fictitious ones indexed n = n̂ + 1, . . . ,N. I would now like to introduce a con-
straint of the form

K=
{

F ∈ RN : Fn̂+1 = · · ·= FN = 0
}

In view of section 5.6, this would imply taking

δ (x) = sup
F∈K

(−Fx′) =

{
0, x1 = · · ·= xn̂ = 0

∞, otherwise

K̃= {x∈RN : x1 = · · ·= xn̂ = 0}, and N the set of all predictable processes κ satisfying
κ(t)∈ K̃ for all t. Moreover, the return processes for the interest rate and original securi-
ties would remain unchanged in the auxiliary market Mκ , while the return processes for
the fictitious securities would be given by ∆Rn(t)+κn(t), where Rn is its return process
in the original market.

However, this may lead to a complication. If you look at a node of the informa-
tion tree where there are “locally redundant” fictitious securities, you may find that there
does not exist a conditional risk neutral probability measure for that node in the auxiliary
market Mκ , because for non-zero κ the securities have ceased to be locally redundant.
Indeed, arbitrage opportunities may now exist in every auxiliary market, which means
the risk neutral computational procedure for solving the constrained optimization prob-
lem breaks down.

The way around this difficulty is to realize that there is no harm in trading a fictitious
security if at a particular moment in time it is “locally redundant.” In other words, if
corresponding to a particular node in the information tree the one-period return for a
fictitious security is a linear combination of the returns for the original securities, then
we can relax the constraint which precludes trading in that security in that (one-period)
circumstance. Hence the setsK and K̃ should be defined for each node in the information
tree, as these may vary across the network. The set K at a node should stipulate that
Fn = 0 if and only if security n is fictitious but it is not “locally redundant” at that node.
It follows that for N one should take all predictable processes κ such that κ(t,ω) is an
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element of the set K which corresponds to (t,ω).
As usual, an auxiliary market Mκ will be defined for each κ ∈ N . The return

processes for the interest rate and the original securities will remain the same, but in
the auxiliary market Mκ the return process for fictitious security n will be given by
∆Rn(t) + κn(t), where Rn is its original return process. Now if fictitious security n is
locally redundant at a node in the information tree, the corresponding value of κn(t) will
be zero, a unique conditional risk neutral probability measure will exist at that node, and
the risk neutral computational approach for solving this constrained optimization prob-
lem can proceed without difficulty. This all will be illustrated in the following example.

Example 5.14 (continued) We now need to let S1 denote the original risky security.
The conditional risk neutral probability measures for the nodes where S1(0) = 5 and
S1(1) = 4 are unique, but this is not true for the node where S1(1) = 8. There we need to
add one fictitious security, which we denote security n = 2 and take ∆R2(2,ω1) = 1/16,
∆R2(2,ω2) = 0, and ∆R2(2,ω3) = −3/16. This results in the conditional risk neu-
tral probability measure (0.6,0.2,0.2), which is a special case of what exists with the
original incomplete model. We take ∆R2 = ∆R1 at the other two nodes, so choosing
S2(0) = 10, the full specifications of fictitious security S2 are listed below. The unique
risk neutral probability measure Q is also provided.

ω S2(0) S2(1) S2(2) ∆R2(1) ∆R2(2) Q
ω1 10 16 17 3/5 1/16 0.15
ω2 10 16 16 3/5 0 0.05
ω3 10 16 13 3/5 −3/16 0.05
ω4 10 8 12 −1/5 1/2 0.25
ω5 10 8 6 −1/5 −1/4 0.50

There are no constraints at the nodes where S1(0) = 5 and S1(1) = 4, so there we
take K= {x ∈ R2} and K̃= {(0,0)}. At the node where S1(1) = 8 we want to preclude
trading in fictitious security S2 so there we have K = {x ∈ R2 : F2 = 0} and K̃ = {x ∈
R2 : x1 = 0}. Hence N consists of all the predictable processes κ of the form

κ(t,ω) =

{
(0, κ̃), t = 1 ω = ω1,ω2

(0,0), otherwise

where κ̃ is a scalar.
The next step is to compute the risk neutral probability measure for the market Mκ .

We have

∆Rκ
2 (2,ω) =





1/16+ κ̃, ω = ω1

κ̃, ω = ω2

−3/16+ κ̃, ω = ω3
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whereas ∆Rκ
1 (2)= ∆R2(2) for all κ ∈N . Thus using the two equations EQκ [∆Rκ

n (2)|S1(1)=
8] for n = 1 and 2 we solve for and obtain the conditional risk neutral probability measure
at the node where S1(1) = 8:

(
3+16κ̃

5
,
1−48κ̃

5
,
1+32κ̃

5

)

The conditional risk neutral probability measures at the other two nodes are the same as
for the original market M0, so the risk neutral probability measure for the market Mκ
must be: (

3+16κ̃
20

,
1−48κ̃

20
,
1+32κ̃

20
,
1
4
,
1
2

)

The next step is to solve the dual problem of minimizing Jκ(v) over κ ∈N . Since
with log utility for unconstrained problems Jκ(v) = ln(v)− E ln(Qκ) + E ln(P), this
amounts to maximizing E ln(Qκ) over κ̃ ∈ R. Writing this out and differentiating leads
to the necessary condition:

16
3+16κ̃

− 48
1−48κ̃

+
32

1+32κ̃
= 0

The solution is found to be

ṽ =
3
√

13−11
16

(
7−√13

)

With log utility for unconstrained problems the optimal terminal wealth is V κ
2 = vP/Qκ ,

so substituting κ̃ one obtains the final result. This optimal terminal wealth for the con-
strained problem is equal to the optimal terminal wealth for the original incomplete
market model, a terminal wealth that we computed earlier with two other approaches.

It should be clear that multiperiod consumption-investment problems for incomplete
markets can also be solved with the same three approaches. The applications of these
approaches are so similar to what has already been done that the details will be left to
the reader.

Exercise 5.21. Solve the consumption-investment problem for the model in example
5.14, assuming log utility (i.e., u(c) = ln(c)) and a discount parameter α taking a general
non-negative value less than or equal to one. Derive the optimal trading strategy, the
optimal consumption process, and the optimal value function J(v). In particular, show
that the optimal consumption quantity at time t = 2 is 2α2vX(ω)/[5(1+α +α2)], where
the random variable X is equal to 7−√13, 5 +

√
13, 4 + 2

√
13, 2, and 1 in states ω1,

ω2, ω3, ω4, and ω5, respectively.

(a) Use the dynamic programming approach.

(b) Use the Lagrange multiplier approach.
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(c) Use the fictitious securities approach.



Chapter 6

Bonds and Interest Rate Derivatives

6.1 The Basic Term Structure Model

Although the securities market models discussed in the preceding chapters are very gen-
eral in terms of the kinds of securities that can be modeled, the securities being modeled
were usually thought of as equities such as common stocks. However, the case where
fixed income securities such as bonds are included among the risky securities is so im-
portant that it will be the subject of this entire chapter. The securities market model for
this situation is called a term structure model.

For a securities market model to be a term structure model, three things are required.
First, it must be a multiperiod model. Second, the interest rate r must be a strictly
positive, predictable process, so that the interest rate rt for borrowing and lending over
the period (t−1, t] is known at time t−1. As usual, B0 = 1 and rt = (Bt−Bt−1)/Bt−1 for
t = 1, . . . ,T so the assumption rt > 0 means that the bank account B is strictly increasing
in time. Since the term structure model will feature several interest rates, r will be called
the spot interest rate as well as (although this is misleading, since r can be random) the
riskless interest rate.

Thirdly, and most important, included among the risky securities is a collection of
what are called zero coupon or discount bonds. Defined for each τ such that 1≤ τ ≤ T .
the zero coupon bond with maturity τ is the security whose price at time τ is certain to
be one. Its time-t price will be denoted Zτ

t , so Zτ = {Zτ
t ;0≤ t ≤ τ} is an adapted process

with Zτ
t = 1. The price of Zτ is not defined for t > τ .

The term structure model includes a zero coupon bond Zτ for every τ satisfying τ =
1, . . . ,T . Hence at each time t there is a collection {Zt+1

t ,Zt+2
t , . . . ,ZT

t } of zero coupon
bond prices. This collection is called the term structure of zero coupon bond prices.

The term structure model must be free of arbitrage opportunities, so there must exist a
risk neutral probability measure Q under which the discounted prices of the zero coupon
bonds are martingales. In other words, there must exist some probability measure Q
with Q(ω) > 0 for all ω ∈Ω such that, for every τ ,

Zτ
s = EQ[BsZτ

t /Bt |Fs], 0≤ s≤ t ≤ τ (6.1)

192
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But Zτ
t = 1 and Bt/Bs = (1 + rs+1) · · ·(1 + rt), so taking t = τ we see that zero coupon

bonds must satisfy the important relationship

Zτ
s = EQ[Bs/Bτ |Fs] = EQ[1/(1+ rs+1) · · ·(1+ rt)|Fs], 0≤ s≤ τ (6.2)

given any risk neutral probability measure Q. Since rt > 0, this implies, for each fixed
s and ω , that τ → Zτ

s (ω) is a strictly decreasing function with Zs+1
s (ω) < 1. Note that

taking τ = s+1 in (6.2) gives

rs+1 +1 = 1/Zs+1
s , s = 0,1, . . . ,T −1 (6.3)

With most kinds of securities market models it is customary to start with a probability
space (Ω,F ,P,F) and then define the spot interest rate rand the risky securities with
respect to the “real-world” probability measure P; this is because the future values of
the risky securities are uncertain. Subsequently, a risk neutral probability measure Q is
determined from these data. But with a term structure model, where future values of
some key securities (i.e., the zero coupon bonds) are known with certainty, it is possible
to take a different approach: first specify a probability space (Ω,F ,Q,F), letting Q be
the risk neutral probability measure from the start, then specify the spot interest rate r,
giving its probabilistic behavior with respect to Q, and finally use (6.2) to provide the
specification of the zero coupon bond prices. Thus it is possible to construct a perfectly
satisfactory term structure model without worrying about the probabilistic behavior of
the spot interest rate and the zero coupon bond prices under a real-world probability
measure.

Although this is a common approach, the reader should keep in mind that it is not
immediately obvious whether there will exist a subjective probability measure P under
which r and the zero coupon bond prices behave in a realistic or desirable manner. And
it may be difficult to determine such a P, even if one is known to exist. This approach is
illustrated in example 6.2, after first illustrating an alternative approach.

Example 6.1. With T = 3 and Ω = {ω1,ω2, . . . ,ω6} suppose the time-1 partition is
P1 = {ω1,ω2}∪ {ω3,ω4}∪ {ω5,ω6} and the time-2 and time-3 partitions are P2 =
P3 = {ω1}∪ · · · ∪{ω6}. The “real-world” probability measure P can be specified, but
its values are not important. For the spot interest rate, let r1 = 0.06.

r2(ω) =





0.09, ω = ω1 ω2

0.06, ω = ω3 ω4

0.03, ω = ω5 ω6
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and

r2(ω) =





0.10, ω = ω1

0.08, ω = ω2

0.07, ω = ω3

0.05, ω = ω4

0.04, ω = ω5

0.02, ω = ω6

Next is the specification of the zero coupon bond price processes Z1, Z2, and Z3. For this
you cannot take arbitrary stochastic processes with Zτ

t < 1 for t < τ and with Zτ
τ = 1; you

must carefully respect equation (6.1) in order to preclude the introduction of arbitrage
opportunities. Indeed, by equation (6.3) there is no flexibility in the choice of Zτ

τ−1 for
τ = 1,2, and 3; these values are presented in table 6.1.

Table 6.1: Data for example 6.1

ω Z1
0 Z2

0 Z2
1 Z3

0 Z3
1 Z3

2 Q(ω)

ω1 0.9434 0.893 0.9174 0.844 0.84 0.9091 0.1839

ω2 0.9434 0.893 0.9174 0.844 0.84 0.9259 0.1161

ω3 0.9434 0.893 0.9434 0.844 0.89 0.9346 0.1517

ω4 0.9434 0.893 0.9434 0.844 0.89 0.9524 0.1483

ω5 0.9434 0.893 0.9709 0.844 0.94 0.9615 0.2582

ω6 0.9434 0.893 0.9709 0.844 0.94 0.9804 0.1418

Next, consider the specification of Z3
1(ω1) = Z3

1(ω2). Taking t = s + 1 in (6.1) we
have

Zτ
s = EQ

[
(1+ rs+1)−1Zτ

s+1|Fs
]
= (1+ rs+1)−1EQ

[
Zτ

s+1|Fs
]

(6.4)

Now we have flexibility in the choice of Zτ
s for s < τ − 1, coming from the freedom to

choose the conditional, risk neutral probabilities. In particular, with two possibilities for
the value of Z3

2(ω) given the information at time 1, Z3
1(ω) can be chosen to be any value

such that (1 + r2)Z3
1(ω) is strictly between the maximum and minimum values that the

zero coupon price can become next period. For example, since Z3
2(ω1) = (1.1)−1 =

0.9091 and Z3
2(ω2) = (1.08)−1 = 0.9259, it suffices for Z3

1(ω1) and Z3
1(ω2) to satisfy the

constraints
0.9091 < 1.09Z3

1(ω1) = 1.09Z3
1(ω2) < 0.9259

We shall take Z3
1(ω1) = Z3

1(ω2) = 0.840. In a similar fashion, we must have

Z3
2(ω3) = 0.9346 < 1.06Z3

1(ω3) = 1.06Z3
1(ω4) < Z3

2(ω4) = 0.9534

and
Z3

2(ω5) = 0.9615 < 1.03Z3
1(ω5) = 1.03Z3

1(ω6) < Z3
2(ω6) = 0.9804
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so we shall take Z3
1(ω3) = Z3

1(ω4) = 0.890 and Z3
1(ω5) = Z3

1(ω6) = 0.940.
Turning to the specification of Z2

0 and Z3
0 , we see that the situation is somewhat more

complicated because each zero coupon bond can become one of three instead of just two
distinct values. Equation (6.4) must be satisfied by both Z2 and Z3:

1.06Z2
0 = 0.9174p+0.9434q+0.9709(1− p−q)

1.06Z3
0 = 0.84p+0.89q+0.94(1− p−q)

where p = Q(ω1)+ Q(ω2) and q = Q(ω3)+ Q(ω4). These equations coupled with the
constraints p > 0, q > 0, and p+q < 1 give rise to three constraints on the pair (Z2

0 ,Z
3
0).

We shall simply take p = q = 0.3, thereby giving Z2
0 = 0.893 and Z3

0 = 0.844.
This completes the specification of the zero coupon bond processes and thus of the

model; the details are presented in the table 6.1. Notice that Z3 is not an increasing
process.

It remains to compute a risk neutral probability measure Q. This will be done by first
computing the conditional risk neutral probabilities, using equation (6.4). We already
have these for the first period: Q(ω1) + Q(ω2) = Q(ω3) + Q(ω4) = 0.3 and Q(ω5) +
Q(ω6) = 0.4. For the second period, equation (6.4) with s = 1, τ = 3, and ω = ω1

or ω2 gives 1.09(0.84) = q̂(0.9091) + (1− q̂)(0.9259), so q̂ = Q(Z3
2 = 0.9091|Z3

1 =
0.84) = 0.6131. In a similar fashion, equation (6.4) gives Q(Z3

2 = 0.9346|Z3
1 = 0.89) =

0.5056 and Q(Z3
2 = 0.9615|Z3

1 = 0.94) = 0.6455. Taking appropriate products of these
conditional probabilities yields the risk neutral probability measure, which is displayed
in table 6.1. Note this is the unique risk neutral probability measure associated with this
specification of the zero coupon bonds, so this model is complete.

Example 6.2. With T = 3, the sample space Ω, the filtration F, and the spot interest rate
r all the same as in example 6.1, we can jump directly to the specification of the risk
neutral probability measure Q. Any strictly positive probability measure will do. We
shall illustrate this by simply taking Q(ω1) = · · ·= Q(ω6) = 1/6.

This completes the specification of the model (unless you also want the real-world
probability measure P). It remains to derive the zero coupon bond price processes by
using equation (6.2) or (6.4). The values of Zτ

τ−1 for τ = 1,2, and 3 will, of course, be
the same as in example 6.1. Equation (6.4) with s = 1, τ = 3, and ω = ω1 or ω2 is

Z3
1(ω1) = Z3

1(ω2) =
1
2

0.9091
1.09

+
1
2

0.9259
1.09

= 0.8417

Similarly, Z3
1(ω3) = Z3

1(ω4) = 0.8901 and Z3
1(ω5) = Z3

1(ω6) = 0.9427. Equation (6.4)
with s = 0 and τ = 3 is

Z3
0 =

1
3

0.8417
1.06

+
1
3

0.8901
1.06

+
1
3

0.9427
1.06

= 0.8410

Finally, equation (6.4) with s = 0 and τ = 2 is

Z2
0 =

1
3

0.9174
1.06

+
1
3

0.9434
1.06

+
1
3

0.9709
1.06

= 0.8905
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The details for this model are summarized as follows:

ω Z1
0 Z2

0 Z2
1 Z3

0 Z3
1 Z3

2 Q(ω)
ω1 0.9434 0.8905 0.9174 0.8410 0.8417 0.9091 0.1667
ω2 0.9434 0.8905 0.9174 0.8410 0.8417 0.9259 0.1667
ω3 0.9434 0.8905 0.9434 0.8410 0.8901 0.9346 0.1667
ω4 0.9434 0.8905 0.9434 0.8410 0.8901 0.9524 0.1667
ω5 0.9434 0.8905 0.9709 0.8410 0.9427 0.9615 0.1667
ω6 0.9434 0.8905 0.9709 0.8410 0.9427 0.9804 0.1667

Notice that here, in contrast with example 6.1, all the zero coupon bond price processes
are increasing.

The approaches used to specify the models in examples 6.1 and 6.2 are easy to imple-
ment, but there is no direct control over all the prices and interest rates that are observ-
able at time t = 0. For practical purposes, it is often important to have a model where
these time t = 0 values are equal to prescribed quantities. This is feasible to achieve,
simply by starting with these values and then using equations (6.1) to (6.4) to introduce
arbitrage-free future values of the interest rates and zero coupon bond prices. The risk
neutral probability measure is introduced simultaneously, as will now be illustrated.

Example 6.3. With T = 3, the sample space Ω, and the filtration F all the same as in ex-
amples 6.1 and 6.2, suppose the values r1 = 0.06, Z1

0 = 0.9434, Z2
0 = 0.89, and Z3

0 = 0.84
are observed at time t = 0. To introduce future values of r and of the prices of these zero
coupon bonds, it suffices to use equations (6.3) and (6.4), moving forward one period at
a time; the risk neutral conditional probabilities will be introduced simultaneously.

Starting with the arbitrary values Z2
1(ω1) = 0.91, Z2

1(ω3) = 0.94, Z2
1(ω5) = 0.97, and

Q(Z2
1 = 0.91) = 0.3, it follows from equation (6.4) with s = 0 and τ = 2 that Q(Z2

1 =
0.94) = 0.2867 and Q(Z2

1 = 0.97) = 0.4133. Equation (6.3) thus implies that r2 takes
the values 0.0989, 0.0638, and 0.0309 in states ω1, ω3 and ω5, respectively.

Turning next to the specification of Z3
1 . we see that we can choose arbitrary values

for two of the three possible values, say Z3
1(ω3) = 0.89 and Z3

1(ω5) = 0.94. This choice
implies Z3

1(ω1) = 0.8223, since equation (6.4) must be satisfied with s = 0 and τ = 3.

The next step is to choose the values of Z3
2 , making sure equation (6.4) with s = 1 and

τ = 3 is satisfied for suitable values of the conditional, risk neutral probabilities. For
instance, with Z3

2(ω1) = 0.90 and Z3
2(ω2) = 0.92, equation (6.4) gives Q(Z3

2 = 0.90|Z3
1 =

0.8223) = 0.8187. Similarly, the choice of Z3
2(ω3) = 0.94, Z3

2(ω4) = 0.95, Z3
2(ω5) =

0.96, and Z3
2(ω6) = 0.98 implies Q(Z3

2 = 0.94|Z3
1 = 0.89) = 0.32 and Q(Z3

2 = 0.96|Z3
1 =

0.94) = 0.55. Equation (6.3) stipulates the values of r3. This model is summarized as
follows:
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ω Z2
1 Z3

1 Z3
2 r2 r3 Q

ω1 0.91 0.8223 0.90 0.0989 0.1111 0.2456
ω2 0.91 0.8223 0.92 0.0989 0.0870 0.0544
ω3 0.94 0.89 0.94 0.0638 0.0638 0.0917
ω4 0.94 0.89 0.95 0.0638 0.0526 0.1950
ω5 0.97 0.94 0.96 0.0309 0.0417 0.2273
ω6 0.97 0.94 0.98 0.0309 0.0204 0.1860

It remains to compute the risk neutral probability measure Q. This follows immedi-
ately from the conditional probabilities which have already been computed; the values
of Q(ω) are shown above.

We now turn to a new topic, the yield to maturity. This is an adapted stochastic
process, denoted Y τ = {Y τ

t ; t = 0, . . . ,τ−1}, that is uniquely associated with each zero
coupon bond. The value Y τ

t is defined to be the one-period interest rate such that a sum
of money equal to the current price of the zero coupon bond, namely Zτ

t , will become
exactly Zτ

τ = 1 at time τ when invested and compounded at this constant rate. In other
words,

Zτ
t (1+Y τ

t )τ−t = 1, 0≤ t < τ ≤ T

which is the same as

Zτ
t = (1+Y τ

t )t−τ , 0≤ t < τ ≤ T (6.5)

as well as
Y τ

t = [Zτ
t ]1/(t−τ)−1, 0≤ t < τ ≤ T (6.6)

Notice that Y t+1
t = rt+1, the current spot interest rate.

At each time t there is a collection {Y t+1
t , . . . ,Y T

t } of yields that is called the term
structure of interest rates or the yield curve. In view of equations (6.5) and (6.6), knowl-
edge of the term structure of interest rates is equivalent to knowledge of the term struc-
ture of zero coupon bond prices {Zt+1

t , . . . ,ZT
t }.

Example 6.1 (continued) Using equation (6.6), we quickly derive the following yields

ω Y 1
0 Y 2

0 Y 3
0 Y 2

1 Y 3
1 Y 3

2
ω1 0.06 0.0582 0.0582 0.09 0.0911 0.10
ω2 0.06 0.0582 0.0582 0.09 0.0911 0.08
ω3 0.06 0.0582 0.0582 0.06 0.0600 0.07
ω4 0.06 0.0582 0.0582 0.06 0.0600 0.05
ω5 0.06 0.0582 0.0582 0.03 0.0314 0.04
ω6 0.06 0.0582 0.0582 0.03 0.0314 0.02

Notice the various kinds of term structures. The time t = 0 term structure is decreasing
with respect to maturity, two of the time t = 1 term structures are increasing, and the
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third time t = 1 term structure is constant.

Another important concept pertaining to term structure models is that of forward
interest rates. Suppose it is time s, and consider the forward price Os of the τ-maturity
zero coupon bond, delivered at time t, where s ≤ t ≤ τ . In view of principle (4.22) and
equation (6.2), this must be

Os =
Zτ

s

EQ[Bs/Bt |Fs]
=

Zτ
s

Zt
s
, 0≤ s≤ t ≤ τ ≤ T

This equation makes economic sense, since there are no arbitrage opportunities. In one
case you buy the τ-maturity discount bond at time s and hold it until time τ . In the other
case you make at time s a forward contract to take delivery of this same bond at time t
and then hold it until it matures at time τ , financing the time t payment Os by investing
at time s exactly OsZt

s dollars in the t-maturity discount bond. In both cases you are sure
to have $1 at time τ , so the time s expenditures must be the same by the law of one price.

For the special case where τ = t +1,

Os =
Zt+1

s

Zt
s

0≤ s≤ t ≤ T (6.7)

must be the time-s forward price of a zero coupon bond that is delivered at time t and
matures one period later. The yield, denoted f (s, t), corresponding to forward price (6.7)
must be

f (s, t) =
Zt

s

Zt+1
s

−1 (6.8)

because Zt+1
s /Zt

s dollars invested at time t at the interest rate f (s, t) will become one
dollar at time t + 1. Note that f (s, t) > 0, because, as pointed out earlier, t → Zt

s is a
strictly decreasing function. Since the yield f (s, t) is associated with a single period, it
will be called the forward spot interest rate or, simply, the forward interest rate.

Taking t = s in (6.8), we see from (6.3) that

f (s,s) = rs+1, 0≤ s < T

This is logically consistent, because if delivery occurs right away, then the forward and
spot interest rates coincide. We also see from (6.8) that f (s, t) is an Fs-measurable ran-
dom variable for each t ≥ s. Hence, for each fixed t, s→ f (s, t) is an adapted stochastic
process.

The collection { f (s,s), . . . , f (s,T −1)} is called the time-s term structure of forward
interest rates. In view of equation (6.8), knowledge of the term structure of zero coupon
bond prices gives you the term structure of forward interest rates. The converse is true,
because Zs

s = 1 and so you can use (6.8) to work out the remaining zero coupon bond
prices in a recursive manner. Hence all three kinds of term structures are equivalent.
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A useful relationship between the forward rates and the price of a discount bond is
obtained from the identity

Zτ
s =

τ

∏
t=s+1

[
Zt

s/Zt−1
s

]

Substituting (6.8) yields

Zτ
s =

τ

∏
t=s+1

[1+ f (s, t−1)]−1 (6.9)

Compare this with equation (6.2).

Example 6.1 (continued) Using equation (6.8), we quickly derive the following for-
ward interest rates.

ω f (0,0) f (0,1) f (0,2) f (1,1) f (1,2) f (2,2)
ω1 0.06 0.0564 0.0581 0.09 0.0921 0.10
ω2 0.06 0.0564 0.0581 0.09 0.0921 0.08
ω3 0.06 0.0564 0.0581 0.06 0.0600 0.07
ω4 0.06 0.0564 0.0581 0.06 0.0600 0.05
ω5 0.06 0.0564 0.0581 0.03 0.0329 0.04
ω6 0.06 0.0564 0.0581 0.03 0.0329 0.02

This is consistent with equation (6.9), because, for example,

Z2
0 =

1
(1.06)(1.0564)

= 0.893

Exercise 6.1. For a term structure model with T = 5, suppose the time t = 0 term struc-
ture is as indicated below. Derive the other two kinds of term structures.

(a) The term structure of zero coupon bond prices is Z1
0 = 0.96, Z2

0 = 0.915, Z3
0 = 0.88,

Z4
0 = 0.837, and Z5

0 = 0.80.

(b) The term structure of yields is Y 1
0 = 4%, Y 2

0 = 5%, Y 3
0 = 6%, Y 4

0 = 7%, and Y 5
0 =

6.5%.

(c) The term structure of forward interest rates is f (0,0) = 4%, f (0,1) = 6%, f (0,2) =
5.5%, f (0,3) = 5%, and f (0,4) = 5%.

Exercise 6.2. For the same model as in example 6.2 except that Q(ωi) = i/21 for i =
1, . . . ,6, compute all the zero coupon bond, yield, and forward rate processes. (Hint:
show Z3

0 = 0.8604)
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6.2 Lattice, Markov Chain Models

Given an arbitrary filtration F, it is usually difficult to specify the spot interest rate pro-
cess r and other elements of the model so that the various interest rate and price pro-
cesses will be realistic under a subjective probability measure P and, moreover, their
time-0 values will be consistent with an arbitrary time-0 term structure. It is desirable to
develop a class of simple models where these objectives are met.

An obvious candidate that comes to mind is an interest rate version of the binomial
model studied in section 3.5. The idea would be to model the spot interest rate r just
like the risky security in the binomial model, selecting a value q for the risk neutral con-
ditional probability, and then the zero coupon bond prices would follow from equation
(6.2). However, due to the fact this model involves only four parameters (namely, r1, u,
d, and q), there is no reason to expect the computed zero coupon bond prices to match
an arbitrary term structure. This kind of model is too simple.

But all is not lost with the binomial model approach. A modest generalization will do
the job. One retains the same submodel of the information structure as for the binomial
model, namely, as portrayed in figure 3.4. But the spot interest rate process r will be
generalized to the extent of being a Markov chain, along the lines of the risky security of
example 3.6 in section 3.6. To be precise, let X denote a Markov chain with initial value
X0 = 0, with state space E = {0,1, . . . ,T}, and with transition probabilities satisfying

P{Xt+1 = j|Xt = n}> 0, j = n+1 or j = n,

P{Xt+1 = j|Xt = n}= 0, otherwise

for t = 0,1, . . . ,T − 1. Hence Xt can be thought of as the cumulative number of heads
after t tosses of a coin, but unlike the binomial process Nt studied in sections 3.5 and 3.6,
the various coin flips are not necessarily independent or identically distributed. Instead,
the probability that coin flip number t + 1 is a head depends, in general, on both t and
the current value Xt .

Figure 6.1 shows a network with the nodes representing the states which X can possi-
bly reach at each time t starting with X0. The branches correspond to positive transition
probabilities. Needless to say, this picture is essentially the same as the lattice in figure
3.5 for the binomial model.

The Markov chain X is not stationary, because the transition probabilities can vary
with respect to t. However, upon defining a new stochastic process by setting X̂ = (Xt , t),
it is apparent that X̂ is also a Markov chain that is, in fact, stationary. Indeed, the nodes
in figure 6.1 correspond to its possible states, each of the form (n, t), and the branches
correspond to its positive Markov transition probabilities. This “stationary” perspective
will be more convenient for the term structure model that is being developed.

Now suppose there are functions ρt : {0,1, . . . , t} → (0,∞) for t = 0,1, . . . ,T − 1.
Usually, each such function is strictly increasing on its domain, but this is not crucial.
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Figure 6.1: State space for the Markov chain X

We can define the spot interest rate process r by setting

rt+1(ω) = ρt
(
Xt(ω)

)
, t = 0,1, . . . ,T −1

The Markov chain X can be interpreted as an exogenous “factor” with the property that
knowledge of it implies knowledge of the spot interest rate r. Knowing that Xt = n at
time t, say, you not only know that rt+1 = ρt(n), but you also know that at time t +1 the
spot interest rate rt+2 will be either ρt+1(n) or ρt+1(n+1). In particular, if each function
ρt is strictly increasing on its domain, then knowledge of rt+1 is equivalent to knowledge
of Xt , and the spot interest rate process is itself a Markov chain. This is the usual case.

Of course, explicit knowledge of the functions ρt is not necessary; they were in-
troduced primarily as a device to link this term structure model with the discussion in
section 3.6 about Markov chains, especially example 3.5. To develop the term structure
model one can proceed directly from the state space representation as displayed in figure
6.1 to the specification of the spot interest rate process rt , simply by specifying its value
at each node of the lattice. Let rt+1(n) denote the value associated with state (n, t) for
n = 0,1, . . . , t and t = 0,1, . . . ,T −1. Even if rt+1(n1) = rt+1(n2), say, the understanding
is that at time t the agents in this securities market know the underlying state X̂t = (n, t).

To complete the specification of the term structure model it suffices to specify the
conditional risk neutral transition probabilities for the process X̂ . Since only two kinds
of transitions from state X̂t = (n, t) are possible, namely, to either state (n + 1, t + 1) or
state (n, t +1), it is convenient to introduce the notation

q(n, t) = Q
{

X̂t+1 = (n+1, t +1)|X̂t = (n, t)
}

for n = 0,1, . . . ,r and t = 0,1, . . . ,T −1. Note, for example, that

Q
{

rt+2 = rt+2(n)|X̂t = (n, t)
}

= 1−q(n, t)

The complete specification of the Markov chain term structure model can now be
neatly displayed with the lattice diagram shown in figure 6.2. With T time periods, there
are 1 + 2 + · · ·+ T = T (T + 1)/2 nodes in this lattice, not counting the terminal nodes



202 CHAPTER 6. BONDS AND INTEREST RATE DERIVATIVES

Figure 6.2: The Markov chain term structure model

at time T . Thus there is a total of T (T +1) parameters to be specified in this model, one
value of r and one value of q for each node.

What about the prices of the zero coupon bonds? In view of equation (6.2) and the
Markov property, we have that

Zτ
t = EQ

[
1/{(1+ rt+1) · · ·(1+ rτ)}|Ft

]

= EQ
[
1/{(1+ rt+1) · · ·(1+ rτ)}|Xt

]

In words, the price of a zero coupon bond depends on the state of the underlying factor
Xt , but otherwise it is independent of the history of prices and interest rates. As with the
spot interest rate, the value of Zτ

t can be expressed as some function of Xt . Equivalently,
the process Zτ is fully specified by knowing its value at each node of the lattice in figure
6.2. We shall take this latter approach and let Zτ

t (n) denote the value of Zτ
t at the node

corresponding to Xt = n.
It is useful to have a formula for Zτ

t (n) in terms of the spot interest rate and conditional
risk neutral probabilities. We can derive one from equation (6.4), which now can be
rewritten as

Zτ
t (n) =

1
1+ rt+1(n)

[
q(n, t)Zτ

t+1(n+1)+ [1−q(n, t)]Zτ
t+1(n)

]
(6.10)

Denote

δ (n, t,1) =
q(n, t)

1+ rt+1(n)
and δ (n, t,0) =

1−q(n, t)
1+ rt+1(n)

so that (6.10) can be simplified to become

Zτ
t (n) =

1

∑
t=0

δ (n, t, i)Zτ
t+1(n+ i)

Since Zτ
τ = 1, a backwards induction argument on t can be used with this equation to
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show for t = 0, . . . ,r and n = 0, . . . , t that

Zτ
t (n) =

1

∑
i1=0

δ (n, t, i1)
1

∑
i2=0

δ (n+ i1, t +1, i2) · · ·

· · ·
1

∑
iτ−t=0

δ (n+ i1 + · · ·+ iτ−t−1,τ−1, iτ−1)

(6.11)

In particular, the time-0 prices of the zero coupon bonds are given by

Zτ
0 =

1

∑
i1=0

δ (0,0, i1)
1

∑
i2=0

δ (i1,1, i2) · · ·
1

∑
iτ=0

δ (i1 + · · ·+ iτ−1,τ−1, iτ) (6.12)

As mentioned at the beginning of this section, it is desirable for the term structure
model to be consistent with the observed, time-0 term structure of zero coupon bond
prices. In principle, equation (6.12) can be used to choose the parameters of the model
in a consistent manner. But there are two problems with this. First, equation (6.12)
is difficult to work with for the purpose of solving for parameters on the right hand
side. Secondly, our general Markov term structure model entails T (T + 1) parameters,
whereas the observed time-0 term structure together with (6.12) give only T equations
in the T (T +1) unknowns. We still have a great many degrees of freedom in the choice
of the parameters.

This matter will be resolved by making further simplifications in the model. The
idea is to reduce the effective number of parameters by making assumptions about the
spot interest rate and/or the conditional risk neutral probabilities. The aim is to obtain a
system of equations which is feasible to solve for unique values of the parameters.

The usual simplification is to make some assumption about the “volatilities,” which
are taken to be either the ratios rt+1(n + 1)/rt+1(n) or the ratios [1 + rt+1(n + 1)]/[1 +
rt+1(n)]. These two approaches are examined in the following two examples.

Example 6.4. Assume the conditional risk neutral probabilities are independent of n,
that is,

q(n, t) = q(t), 0≤ n≤ t < T

These T numbers q(0), . . . ,q(T −1), and thus all the conditional risk neutral probabili-
ties, are specified. In addition, T numbers c(0), . . . ,c(T −1) are also specified, and it is
required that (the first equality here is just (6.3))

Zt+1
t (n+1)
Zt+1

t (n)
=

1+ rt+1(n)
1+ rt+1(n+1)

= c(t), 0≤ n≤ t < T (6.13)

The number c(t) can be interpreted as a measure of the volatility of the time-t spot
interest rate, a measure which is independent of n. Using (6.13) recursively gives

Zτ
τ−1(n+ i) = Zτ

τ−1(n)ci(τ−1), 0≤ n≤ n+ i≤ τ−1 < T (6.14)
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In particular,
Zτ

τ−1(i) = Zτ
τ−1(0)ci(τ−1), 0≤ i≤ τ−1 < T (6.15)

Since Zτ
τ−1(n) = 1/[1 + rτ(n)], this says that knowing rt(0) you can deduce rt(n) for

all n ≥ 1. Hence this model will be fully specified if we can choose the T numbers
r0(0), . . . ,rT−1(0) (equivalently, Z1

0(0),Z2
1(0), . . . ,ZT

T−1(0)) to be consistent with the T
observed zero coupon bond prices Z1

0 , . . . ,Z
T
0 .

To show how to do this, use will be made of the following equation:

Zτ
t (n) =

τ−1

∏
j=t

g( j,τ−1)Z j+1
j (n), n = 0,1, . . . , t (6.16)

where g(s,s)≡ 1 and

g(s,s)≡ 1−q( j)+q( j)c( j +1) · · ·c(s), j = 0,1, . . . ,s−1

Equation (6.16) can be verified with a backwards induction argument on t, beginning
with t = τ − 1. for which it is clearly true. Assuming (6.16) is true for t + 1, equation
(6.10) gives

Zτ
t (n) = Zt+1

t (n)
[
q(t)Zτ

t+1(n+1)+ [1−q(t)]Zτ
t+1(n)

]

= Zt+1
t (n)

[
q(t)

τ−1

∏
j=t+1

g( j,τ−1)Z j+1
j (n+1)+{1−q(t)}

τ−1

∏
k=t+1

g(k,τ−1)Zk+1
k (n)

]

= Zt+1
t (n)

[
q(t)

τ−1

∏
j=t+1

g( j,τ−1)Z j+1
j (n)c( j)+{1−q(t)}

τ−1

∏
k=t+1

g(k,τ−1)Zk+1
k (n)

]

where the last equality uses (6.14). Hence

Zτ
t (n) = Zt+1

t (n)

[
q(t)

τ−1

∏
j=t+1

c( j)+1−q(t)

]
τ−1

∏
j=t+1

g( j,τ−1)Z j+1
j (n)

= Zt+1
t (n)g(t,τ−1)

τ−1

∏
j=t+1

g( j,τ−1)Z j+1
j (n)

and equation (6.16) is verified.
It follows from (6.16) that

Zt+1
0 (0)
Zt

0(0)
=

∏t
j=0 g( j, t)Z j+1

j (0)

∏t−1
j=0 g( j, t−1)Z j+1

j (0)
=

Zt+1
t (0)∏t−1

j=0 g( j, t)

∏t−2
j=0 g( j, t−1)

where the second equality uses g(t, t) = g(t− 1, t− 1) = 1. Hence this and (6.15) give
the key result for 0≤ n≤ t < T :

Zt+1
t (n) =

Zt+1
0 (0)
Zt

0(0)
[c(t)]n

∏t−2
j=0 g( j, t−1)

∏t−1
j=0 g( j, t)

(6.17)
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The right hand side of (6.17) is completely known, coming from either the specified
numbers q(t) and c(t) or the time-0 term structure of zero coupon bond prices. Hence
rt+1(n) = 1/Zt+1

t (n)−1 is known for all n and t.
The numbers c(t) are normally in the vicinity of 1, which means the spot interest

rate does not change too much from one period to the next. Indeed, these numbers
must be selected with care in order to keep the interest rates from becoming negative or
unreasonably large. If, for instance, c(t) = 1, then by (6.14) Zt+1

t (n) is independent of n.
This also implies g( j, t) = g( j, t−1), so (6.17) becomes Zt+1

t (n) = Zt+1
0 (0)/Zt

0(0), that
is, one period zero coupon bond prices at time t do not depend on the state n but only on
the initial term structure.

This model can be generalized to allow the risk neutral conditional probabilities q(t)
to depend on the state n. In the opposite direction, an important special case is obtained
by taking q(t) = q and c(t) = 1/k for all t, where q and k are specified positive scalars
with q < 1. Then for j < s the function g becomes

g( j,s) = 1−q+qk j−s ≡ 1
h(s− j)

where the new function h is defined in an obvious manner. In this case (6.17) becomes
simply Zt+1

t (n) = Zt+1
0 (0)k−nh(t)/Zt

0(0).

Example 6.5. Assume q(n, t) = 0.5 for all n and t, so

δ (n, t,1) = δ (n, t,0) =
0.5

1+ rt+1(n)
= 0.5Zt+1

t (n)

Equation (6.12) simplifies to become

Zτ
0 =

(
1
2

)τ−1

Z1
0(0)

1

∑
i1=0

Z2
1(i1)

1

∑
i2=0

Z3
2(i1 + i2) · · ·

1

∑
iτ−1=0

Zτ
τ−1(i1 + · · ·+ iτ−1) (6.18)

It remains to specify the T (T + 1)/2 values of the spot interest rate. They will be cho-
sen to be consistent with the T time-0 zero coupon bond prices as well as T (T − 1)/2
specified spot rate volatilities, giving a total of T (T +1)/2 constraints.

The spot rate volatility is defined to be

σt(n)≡ 1
2

ln
(

rt+2(n+1)
rt+2(n)

)
, 0≤ n≤ t ≤ T −1 (6.19)

Thus if you know rt+1 or Zt+1
t (n) for one value of n, you know both for all n = 0, . . . , t,

just like example 6.4. For instance, rt+2(n + 1) = rt+2(0)exp{2[σt(0)+ · · ·+ σt(n)]}.
Using this idea, equation (6.18), and the time 0 term structure, you can work out all
the values of the spot interest rate by moving forward in time in a recursive manner.
Beginning with τ = 2 in (6.18) and t = 0 in (6.19), you solve for the two unknowns
r2(0) and r2(1). In general, knowing Zt

t−1(n) and rt(n) for all 0 ≤ n < t < τ , you user
τ−1 versions of (6.19) with t = τ−2 together with (6.18) to solve for the τ unknowns
rτ(0), . . . ,rτ(τ−1).
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An alternative perspective is to view the spot interest rate process r as being governed
by the stochastic difference equation

∆rt+1 = µ(t,rt)+σ(t,rt)Nt , (6.20)

where µ :R2 →R and σ :R2 →R+ are specified functions, {Nt} is a sequence of inde-
pendent and identically distributed random variables with Q(Nt = 1) = Q(Nt = −1) =
0.5, and, as usual, ∆rt+1 = rt+1− rt . This stochastic difference equation formulation is
appealing, because under the risk neutral probability measure Q the conditional expected
change in the spot rate is µ(t,rt) and the conditional variance of the change in the spot
rate is σ2(t,rt).

Given a spot interest rate process r defined on a binary lattice, it is easy to come
up with consistent functions for µ and σ . For example, knowing rt(n), rt+1(n), and
rt+1(n+1), the stochastic difference equation gives

rt+1(n+1)− rt(n) = µ
(
t,rt(n)

)
+σ

(
t,rt(n)

)

and
rt+1(n)− rt(n) = µ

(
t,rt(n)

)−σ
(
t,rt(n)

)

in which case one must have

µ
(
t,rt(n)

)
=

rt+1(n+1)+ rt+1(n)−2rt(n)
2

and

σ
(
t,rt(n)

)
=

rt+1(n+1)− rt+1(n)
2

More useful is to start with a stochastic difference equation for r and then derive a
binomial lattice formulation. For example, suppose

∆rt+1 = φ(t)−art +σ(t)Nt , (6.21)

where a is a scalar satisfying 0 < a < 1 and φ and σ are positive functions with domain
R. This formulation is appealing, because it says the interest rate tends to decrease if
rt > φ(t)/a, otherwise the interest rate tends to increase. However, the function a must
satisfy a certain constraint in order for this process to be consistent with a binomial
lattice formulation. In particular, an up-down move (that is, Nt = 1 and Nt+1 =−1) must
arrive at the same value for the spot interest rate as a down-up move (that is, Nt = −1
and Nt+1 = 1). In other words, we must have

rt+2 = φ(t +1)+(1−a)φ(t)+(1−a)2rt +(1−a)σ(t)−σ(t +1)

= φ(t +1)+(1−a)φ(t)+(1−a)2rt − (1−a)σ(t)+σ(t +1)

for all t. A necessary and sufficient (assuming σ > 0) condition for this to be true is that
σ(t +1) = (1−a)σ(t) = (1−a)tσ(1). Hence the adaptation of this stochastic difference
equation formulation to a binomial lattice leads to a severe restriction on the “volatility”
functions σ .
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This restriction on the volatility function can be ameliorated by working with a tri-
nomial lattice. The idea here is that from one period to the next the spot interest rate
moves to one of three possible values: “up,”“middle,” or “down.” Moreover, various
paths recombine: up-down = middle-middle = down-up, up-middle = middle-up, and
middle-down = down-middle. Thus there will be three nodes after one period, five nodes
after two periods, and, in general, 2t +1 nodes after t periods.

The stochastic difference equation for r has the same form as (6.20), only now the
random variables {Nt} are independent but satisfy Q(Nt = 1) = Q(Nt =−1) = q(t) and
Q(Nt = 0) = 1−2q(t), where 0 < q(t) < 1/2. Hence (see exercise 6.7) the conditional
mean and variance of the change in the spot interest rate are µ(t,rt) and 2q(t)σ2(t,rt),
respectively.

Now consider again the special case (6.21), only with {Nt} as in the preceding para-
graph. This formulation is compatible with a trinomial lattice if and only if (see exercise
6.8) σ(t + 1) = (1−a)σ(t) = (1−a)tσ(1), the same condition as before. In this case,
the conditional variance of the change of the spot interest rate is 2q(t)(1− a)2t−2σ(1).
Hence flexibility in the choice of the probabilities q(t) give the model builder some room
to match the conditional variances with desired values. For instance, these variances can
be made constant by taking q(t) = 0.5(1− a)2−2t , provided these probabilities satisfy
0 < q(t) < 1/2.

Exercise 6.3. Show for example 6.4 that if m−1
t ≤ [c(t)]t ≤mt for some number mt > 1,

then
Zt+1

0 (0)
mtZt

0(0)
≤ Zt+1

t (n)≤ mtZt+1
0 (0)

Zt
0(0)

Use this fact to show how the c’s can be selected to ensure the spot interest rate remains
between specified upper and lower bounds.

Exercise 6.4. Show for the special case of example 6.4 with q(t) = q and c(t) = 1/k
that starting with arbitrary values of q, k, and the initial term structure, it is possible to
obtain negative interest rates.

Exercise 6.5. For the model in example 6.4, show that

(a) Zτ
t (n) = Zτ

t (0)∏τ−1
j=t cn( j), n≤ t < τ

(b) Zτ
t (n) = [Zτ

0(0)−Zt
0(0)]

[
∏τ−1

j=t cn( j)
][

∏t−1
j=0

g( j,t−1)
g( j,τ−1)

]
, n≤ t < τ

(c) f (t,τ,n) =
[
Zτ

0(0)−Zτ+1
0 (0)

]
[c−n(τ)]

[
∏t−1

j=0
g( j,τ)

g( j,τ−1)

]
−1, n≤ t < τ

where f (t,τ,n) denotes the forward spot rate corresponding to state n at time t.

Exercise 6.6. Example 6.5 can be generalized to allow for arbitrary conditional proba-
bilities with 0 < q(n, t) < 1, in which case the volatilities are defined by

σt(n) = ln{rt+2(n+1)/rt+2(n)}
√

q(n, t)[1−q(n, t)]
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For an arbitrary term structure of discount bond prices with Z1
0 > Z2

0 > · · ·> ZT
0 and for

arbitrary volatilities with σt(n) > 0, show by induction that there exists a unique and
strictly positive spot interest rate process r such that the model is consistent with these
quantities and free of arbitrage.

Exercise 6.7. Suppose the spot interest rate r is governed by the stochastic difference
equation (6.20) with Q(Nt = 1) = Q(Nt =−1) = q(t) and Q(Nt = 0) = 1−2q(t), where
0 < q(t) < 1/2. Verify that the conditional mean and variance of the change in the spot
interest rate are µ(t,rt) and 2q(t)σ2(t,rt), respectively.

Exercise 6.8. Suppose the spot interest rate r is governed by the stochastic difference
equation (6.21) with Q(Nt = 1) = Q(Nt =−1) = q(t) and Q(Nt = 0) = 1−2q(t), where
0 < q(t) < 1/2. Assuming σ(t) > 0, verify that this formulation is compatible with a
trinomial lattice if and only if σ(t +1) = (1−a)σ(t) = (1−a)tσ(1).

Exercise 6.9. Suppose the spot interest rate is governed by stochastic difference equa-
tion (6.20) with the volatility function of the form σ(t,r) =

√
rσ(t) for some positive

function σ onR. Under what restrictions on µ and σ will this formulation be compatible
with:

(a) a binomial lattice?

(b) a trinomial lattice?

6.3 Yield Curve Models

In the preceding two sections, the construction of term structure models emphasized the
role of the spot interest rate process r = {rt ; t ≥ 1}. The idea was to first specify the
probability space and the filtration, to then specify the process r (usually it is taken to
be a Markov chain), and to finally use equations like (6.2) to specify the zero coupon
bond processes. This is an easy approach to implement, providing a variety of arbitrage-
free term structure models. However, this approach has a disadvantage: it is difficult to
model the behavior of yields and zero coupon bond prices at different maturities. For
example, the model builder may be concerned with the volatility of the zero coupon
bond that matures in period 10. Or the model builder may be particularly interested
in the spread between short and long term interest rates. Features like these cannot be
modeled explicitly with the spot interest rate approach.

An alternative approach, called the yield curve or whole yield approach, is to build the
model by regarding the whole term structure as the state of a stochastic process. After
specifying the probability space and the filtration submodel of the information flow, you
directly specify how the whole term structure evolves in time. This can be done by
working with either the term structure of yields, the term structure of zero coupon bond
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prices, or the term structure of forward spot rates. Whatever the choice, after one term
structure process is specified, the other two as well as the spot interest rate processes
follow from the equations in section 6.1. Moreover, the term structure process is usually
taken to be a Markov chain, and one can work with either the real-world or the risk
neutral probability measure.

A disadvantage of the yield curve approach is that worrying about arbitrage oppor-
tunities can make its development and implementation more difficult than with the spot
interest rate approach. Combining equations (6.3) and (6.4) gives

Zτ
s = Zs+1

s EQ
[
Zτ

s+1|Fs
]
, 0≤ s < τ ≤ T (6.22)

For the absence of arbitrage opportunities, it is necessary and sufficient that there exists
a probability measure Q (the risk neutral probability measure) such that this equation is
satisfied for all indicated s and τ . But as illustrated in the following example, an arbitrary
selection of the term structure process may not satisfy (6.22) for any probability measure.

Example 6.6. Suppose T = 3, K = 8, and the information submodel is a binomial tree
(but not a lattice). The time 0 zero coupon bond prices are taken to be Z1

0 = 0.95,
Z2

0 = 0.90, and Z3
0 = 0.85. In the case of an “up” move, the time 1 discount bond prices

are taken to be Z2
1 = 0.94 and Z3

1 = 0.89, whereas in the case of a “down” move the time
1 discount bond prices are taken to be Z2

1 = 0.96 and Z3
1 = 0.91. Let q denote the risk

neutral conditional probability of an “up” move between times 0 and 1. Equation (6.22)
for τ = 2 implies q = 0.6316, whereas equation (6.22) for τ = 3 implies q = 0.7632.
But there is no probability measure Q under which (6.22) is satisfied for both τ = 2 and
τ = 3. Hence there must exist an arbitrage opportunity.

To produce an arbitrage opportunity, let Hi denote the units purchased at time 0 of
the zero coupon bond that matures after i periods, i = 1,2, and 3. The initial cost of this
portfolio is V0 = 0.95H1 +0.9H2 +0.85H3; for an arbitrage opportunity we want V0 = 0,
implying, for instance, H2 = −(19/18)H1− (17/18)H3. After an up move the time 1
value of the portfolio will be

V1 = H1 +0.94H2 +0.89H3 = 0.0078H1 +0.0022H3

whereas after a down move the value will be

V1 = H1 +0.96H2 +0.91H3 =−O.0133H1 +O.0033H3

Thus any trading strategy which makes the right hand sides of both values of V1 strictly
positive will be an arbitrage opportunity. For instance, one could take H1 = 0 and H3 =
18, in which case H2 =−17.

The problem illustrated by example 6.6 was that the model was over-specified, mak-
ing it impossible for (6.22) to be satisfied. To circumvent this difficulty, the trick is to
specify just enough of the risk neutral probability measure Q and the term structure pro-
cess values so that (6.22) (or one of its equivalents) can be used to uniquely specify the
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balance of the model. This will be illustrated by working with a binary tree submodel
of the information, where the risk neutral conditional probability of an “up” move from
a node will always be denoted by q (the actual value can possibly vary from one node
to another). The objective here is to explain how to achieve a satisfactory specification
of the term structure process of zero coupon bond prices. Later, an alternative, more
efficient approach will be presented, where the constructed process is the term structure
of forward spot rates.

Suppose the term structure {Zs+1
s ,Zs+2

s , . . . ,ZT
s } of zero coupon bond prices at a time

s node of the information tree has been specified. This can be any collection of T − s
numbers satisfying 1 > Zs+1

s > Zs+2
s > · · ·> ZT

s > 0. The objective, to be carried out in
two steps, is to specify the time s+1 values of these zero coupon bond prices at the two
“downstream” nodes. This two-step process can be replicated at the other nodes in the
information tree, thereby completing the specification of the term structure process.

The first step is to set the time s + 1 zero coupon bond prices in the event of an up
move. These will be T − s−1 arbitrary numbers denoted Zs+2

s+1(u),Zs+3
s+1(u), . . . ,ZT

s+1(u)
and satisfying

1 > Zs+2
s+1(u) > Zs+3

s+1(u) > · · ·> ZT
s+1(u) > 0 (6.23)

It is here that the model builder can incorporate desirable features, such as the manner
in which the term structure shifts from one time period to the next.

The second and final step is to use equation (6.22) to specify the T − s− 1 zero
coupon bond prices, denoted Zs+2

s+1(d),Zs+3
s+1(d), . . . ,ZT

s+1(d), in the event of a “down”
move. Solving for Zτ

s+1(d), (6.22) gives

Zτ
s+1(d) =

Zτ
s /Zs+1

s −qZτ
s+1(u)

1−q
, τ = s+2, . . . ,T (6.24)

Hence this completes the specification of the term structure process at the two down-
stream nodes, except for one possible problem: there is no guarantee that the term struc-
ture of zero coupon bond prices will be “legitimate,” satisfying the inequalities

1 > Zs+2
s+1(d) > Zs+3

s+1(d) > · · ·> ZT
s+1(d) > 0 (6.25)

In view of (6.24), it is not sufficient for the zero prices after an up move to merely satisfy
the inequalities in (6.23); they must satisfy some additional constraints.

Equation (6.24) says that ZT
s+1(d) > 0 if and only if

ZT
s+1(u) <

ZT
s

qZs+1
s

(6.26)

This is easy to satisfy, since the right hand side is sure to be strictly positive.
Equation (6.24) says that 1 > Zs+2

s+1(d) if and only if

Zs+2
s+1(u) >

Zs+2
s

qZs+1
s

− 1−q
q

(6.27)
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This also is easy to satisfy, since an easy computation shows that the right hand side is
sure to be strictly less than one.

Finally, the remaining inequalities in (6.25) are

Zτ
s+1(d) > Zτ+1

s+1 (d), τ = s+2, . . . ,T −1

Equation (6.24) says that these inequalities are satisfied if and only if

Zτ
s+1(u)−Zτ+1

s+1 (u) <
Zτ

s −Zτ+1
s

qZs+1
s

, τ = s+2, . . . ,T −1 (6.28)

Given arbitrary values of q,Zs+1
s , . . ., and ZT

s with q∈ (0,1) and 1 > Zs+1
s > · · ·> ZT

s > 0,
it is possible to choose Zs+2

s+1(u), . . . ,ZT
s+1(u) so as to satisfy (6.28) as well as (6.23),

(6.26), and (6.27) (see exercise 6.10). Similarly, given arbitrary values of Zs+1
s , . . ., and

ZT
s with 1 > Zs+1

s > · · ·> ZT
s > 0 and arbitrary values of Zs+2

s+1(u), . . . ,ZT
s+1(u) satisfying

(6.23), it is possible to choose q close enough to 0 so that (6.28) will be satisfied. Hence
with a little bit of flexibility, it is always possible to specify legitimate term structures
of zero coupon bond prices at both downstream nodes. Moreover, since equation (6.22)
was utilized, the absence of arbitrage opportunities is ensured.

Example 6.7. Suppose Zs+i
s = δ t and Zs+1+i

s+1 (u) = θ i for i = 1,2, . . . and two numbers
δ ,θ ∈ (0,1). The numbers δ and T are fixed; there is some flexibility in the choice of q
and θ . Inequality (6.26) is the same as

qθ T−s−1 < δ T−s−1 (6.29)

whereas inequality (6.27) is the same as

1−q+qθ > δ (6.30)

Moreover, the inequalities in (6.28) are the same as

q(1−θ)θ τ−s−1 < (1−δ )δ τ−s−1, τ = s+2, . . . ,T −1 (6.31)

Now suppose θ = δ + ε for some ε > 0. Inequality (6.29) will be true provided q <

(δ/θ)T−s−1, so reasonable values of q can be accommodated if ε is small enough. In-
equality (6.30) is automatically true, because 1−q+qθ > 1−q+qθ > (1−q)δ +qδ =
δ . Inequality (6.31) is true for all τ ≤ T −1 if and only if it is true for τ = T −1, so our
final requirement on q and ε is

q <
(1−δ )

(1−δ − ε)

(
δ

δ + ε

)T−s−2

a requirement that is usually easy to achieve with reasonable values of q and ε .

Constructing the term structures of zero coupon bond prices at each node of a binary
tree can be tricky, because you need to worry about constraints of the form (6.25). It
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is often easier to work with term structures of forward spot rates, because instead of
constraints like (6.15) you only need to make sure the forward spot rates at each node are
positive (of course, in both cases you must also worry about the no-arbitrage conditions).

To see how to construct a forward spot rate yield curve model, suppose a term struc-
ture { f (s,s), . . . , f (s,T −1)} of (non-negative) forward spot rates has been specified at
a time s node of the binary information tree. Let q be the conditional risk neutral prob-
ability of an “up” move to the time (s+1) node where the term structure { fu(s+1,s+
1), . . . , fu(s+1,T −1)} has also been specified. The objective is to use the no-arbitrage
conditions to produce the term structure { fd(s + 1,s + 1), . . . , fd(s + 1,T − 1)} at the
time (s+1) “down” node.

Using equation (6.9) to substitute for Z in equation (6.22), one obtains the no-arbitrage
condition

τ

∏
t=s+2

[1+ f (s, t−1)]−1 = EQ

[
τ

∏
t=s+2

[1+ f (s+1, t−1)]−1

∣∣∣∣∣Fs

]
, τ = s+2, . . . ,T

(6.32)
We can use these T − s− 1 equations to solve for the T − s− 1 variables fd(s + 1,s +
1), . . . , fd(s + 1,T − 1). Denote g(s, t) ≡ [1 + f (s, t)]−1, gu(s, t) ≡ [1 + fu(s, t)]−1, and
gd(s, t)≡ [1+ fd(s, t)]−1. Then (6.32) can be rewritten as

τ

∏
t=s+2

g(s, t−1) = q
τ

∏
t=s+2

gu(s+1, t−1)+(1−q)
τ

∏
t=s+2

gd(s+1, t−1)

in which case

gd(s+1,τ−1) =

τ
∏

t=s+2
g(s, t−1)−q

τ−1
∏

t=s+2
gu(s+1, t−1)

(1−q)
τ
∏

t=s+2
gd(s+1, t−1)

, τ = s+2, . . . ,T (6.33)

Hence the gd’s can be computed recursively, starting with τ = s + 2 (the denominator
is just 1− q in this case), then τ = s + 3, and so forth. Given arbitrary values of q, the
f ’s, and the fu’s, there is no guarantee that all the fd’s will turn out positive. However,
given arbitrary values of the f ’s and some flexibility in the choice of q and the fu’s, it is
always possible to obtain non-negative fd’s.

Exercise 6.10. Verify the statement made just after (6.28): given arbitrary values of q,
Zs+1

s , . . ., and ZT
s with q ∈ (0,1) and 1 > Zs+1

s > .. . > ZT
s > 0, it is possible to choose

Zs+2
s+1(u), . . . ,ZT

s+1 so as to satisfy (6.28) as well as (6.23), (6.26), and (6.27).

Exercise 6.11. In example 6.7, suppose s = 0, δ = 0.95, and T = 8. What values of
θ > 0.95 are admissible if q = 0.5? What values of q are admissible if θ = 0.96?
Compute Zτ

1(d), τ = 2, . . . ,T , for the case where q = 0.5 and θ = 0.96.
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Exercise 6.12. Suppose s = 0, q = 0.5, T = 5, f (0,0) = 0.05, f (0,1) = 0.06, f (0,2) =
0.07, f (0,3) = 0.06, and f (0,4) = 0.05. Moreover, suppose fu(1, t) = f (0, t) + 0.01
for all t ≥ 1. Use (6.33) to verify that fd(1,1) = 0.0502, fd(1,2) = 0.0603, fd(1,3) =
0.0505, and fd(1,4) = 0.0407.

Exercise 6.13. Suppose positive values of f (s,s), . . . , f (s,T −1) are fixed. For the cases
listed below, explain whether it is always possible to produce positive values of fd(s +
1,s+1), . . . , fd(s+1,T −1) satisfying (6.33). If yes, give a proof. If no, give a counter-
example.

(a) q ∈ (0,1) and positive values of fu(s + 1,s + 1), . . . , fu(s + 1,T − 1) are all fixed,
arbitrary numbers.

(b) q ∈ (0,1) is a fixed number, but there is flexibility in the choice of the positive
numbers fu(s+1,s+1), . . . , fu(s+1,T −1).

(c) The positive numbers fu(s+1,s+1), . . . , fu(s+1,T −1) are fixed, but there is flex-
ibility in the choice of q ∈ (0,1).

6.4 Forward Risk Adjusted Probability Measures

In order to facilitate computations for interest rate derivatives this section will introduce
and describe the properties of a new probability measure. In particular, a new and quite
useful formula will be developed for the price of a contingent claim. First, however, are
some preliminary results from probability theory.

Throughout this section fix the time τ ≤ T and consider a strictly positive random
variable Mτ ∈ Fτ . satisfying EQ[Mτ ] = 1. For the time being, Q here is an arbitrary
probability measure, although shortly we shall take Q to be the risk neutral probability
measure.

Define a new probability measure, denoted Pτ , by setting

Pτ(ω)≡Mτ(ω)Q(ω), all ω ∈Ω

Note that Pτ is indeed a legitimate probability measure, because Pτ(ω) > 0 for all ω and
the assumption EQ[Mτ ] = 1 implies Pτ(Ω) = 1. Let Eτ denote the expectation operator
corresponding to Pτ .

Next, define a martingale M = {Mt ; t = 0, . . . ,τ} by setting

Mt ≡ EQ[Mτ |Ft ], t = 0,1, . . . ,τ

Notice that M0 = EQ[Mτ ] = 1 and that M is a martingale with respect to Q but not
necessarily with respect to Pτ . This martingale plays a role in the following technical
result, which relates conditional expectation under the two probability measures.

If X is a random variable, then Eτ [MtX |Ft ] = EQ[MτX |Ft ] for t =
0,1, . . . ,τ .

(6.34)
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Clearly (6.34) is true for X ∈Ft , for then the equation is simply MtX = XEQ[Mτ |Ft ].
It is also easily seen to be true for t = 0, for then M0 = 1 and we have

Eτ [X ] = ∑
ω

X(ω)Pτ(ω) = ∑
ω

X(ω)Mτ(ω)Q(ω) = EQ[MτX ]

For the general case, it suffices to consider arbitrary A ∈Pt , an event in the partition of
Ω corresponding to Ft , and show that

Eτ [MtX |A] = EQ[MτX |A] (6.35)

For the left hand side we have

Eτ [MtX |A] =
∑

ω∈A
X(ω)Mt(ω)Pτ(ω)

∑
ω∈A

Pτ(ω)
=

∑
ω∈A

X(ω)Mt(ω)Mτ(ω)Q(ω)

∑
ω∈A

Mτ(ω)Q(ω)

But Mt is constant on A and given by

Mt(ω) = EQ[Mt |A] = ∑̂
ω∈A

Mτ(ω̂)Q(ω̂)/Q(A), all ω ∈ A

so substituting this in the expression for Eτ [MtX |A] yields

Eτ [MtX |A] =
∑

ω∈A
X(ω)Mτ(ω)Q(ω)

Q(A)
= EQ[MτX |A]

This completes the verification of (6.35) and thus (6.34).
We are now in a position to explain a fundamental relationship in probability theory:

The stochastic process Y M = {YtMt ; t = 0, . . . ,τ} is a martingale under Q
if and only if the stochastic process Y = {Yt , ; t = 0, . . . ,τ} is a martingale
under Pτ .

(6.36)

To see this, note that Y M is a martingale under Q if and only if YtMt = EQ[YτMτ |Ft ]
for all t. Now using (6.34) with X = Yτ , we see the latter is true if and only if YtMt =
Eτ [MtYτ |Ft ], for all t. But Eτ [MtYτ |Ft ] = MtEτ [Yτ |Ft ], so the latter is the same as
Yt = Eτ [Yτ |Ft ] for all t, that is, Y is a martingale under Pτ .

With these preliminaries out of the way, we are ready to return to our term structure
model. Let the stochastic process π = {πt : 0≤ t ≤ s} represent the price of an asset such
as a stock, a zero coupon bond, or a contingent claim, where τ ≤ s≤ T . Set Yt = πt/Zτ

t
and recall from principle (4.22) that Yt represents the time-t forward price for delivery
of the asset at time τ . Using our standard notation for forward prices, we therefore will
sometimes write Ot for Yt = πt/Zτ

t .
Next, let Q be the risk neutral probability measure and set Mτ = {BτZτ

0 ]−1. Note that
Mτ(ω) > 0 and EQ[Mτ ] = (1/Zτ

0)EQ[1/Bτ ] = 1 (because Zτ
0 = EQ[1/Bτ ]). Hence we can

proceed as above and define the Q-martingale

Mt = EQ[Mτ |Ft ] =
1

Zτ
0

EQ[1/Bτ |Ft ] =
Zτ

t

Zτ
0Bt
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where the last equality follows from the risk neutral formula (6.1) for Zτ
t . We also define

the forward risk adjusted probability measure (also called the τ forward probability
measure):

Pτ(ω) = Mτ(ω)Q(ω) =
Q(ω)

Zτ
0Bτ(ω)

Now observe that YtMt = OtMt = (πt/Zτ
t )(Zτ

t /[Zτ
0Bt ]) = πt/[Zτ

0Bt ], so the process
Y M represents the discounted price of the asset divided by the constant Zτ

0 . This is
a martingale under the risk neutral probability measure Q, so by (6.36) we have the
following important result:

Under the forward risk adjusted probability measure Pτ , the time-t forward
price Ot for delivery of an asset at time τ is a martingale.

(6.37)

Principle (6.37) is important because it leads to a new and useful formula for the price
of a derivative security. Let πτ ∈Fτ be the time-τ price of a security; for instance, πτ
is the time-τ payoff of a contingent claim. But the time-τ forward price Oτ for time-τ
delivery of this security is Oτ = πτ , so (6.37) implies

Ot = πt/Zτ
t = Eτ [Oτ |Ft ] = Eτ [πτ |Ft ], t ≤ τ

Multiplying through by Zτ
t yields the following:

If πt is the time-t price of a security, then

πt = Zτ
t Eτ [πτ |Ft ], t ≤ τ

(6.38)

The traditional risk neutral formula πt = BtEQ[πτ/Bτ |Ft ] is convenient when the spot
interest rate is constant or deterministic, for then the time-τ value Bτ of the bank account
process is deterministic and this formula simplifies to πt = (Bt/Bτ)EQ[πτ |Ft ]. Hence
for derivative pricing all you need is the conditional distribution of πτ under the risk
neutral probability measure. But for interest rate models and other situations where the
spot interest rate r is stochastic, the bank account value Bτ does not factor outside the
conditional expectation, and so to apply the traditional formula you need the conditional
joint distribution of (πτ ,Bτ) under the risk neutral probability measure. In practice, this
may be difficult to obtain. On the other hand, even with stochastic interest rates, to apply
the formula in (6.38), all you need is the conditional distribution of πτ under the forward
risk adjusted probability measure corresponding to time-τ .

Example 6.1 (continued) For τ = 3 we first compute M3(ω)= [Z3
0B3(ω)]−1 = [0.844{1+

r1(ω)}{1+r2(ω)}{1+r3(ω)}]−1. Then using the risk neutral probabilities we compute
the forward risk adjusted probability measure P3(ω) = M3(ω)Q(ω). These numbers are
given below, along with the earlier values of the martingale M, which are computed
using Mt = EQ[M3|Ft ].
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ω B3 M0 M1 M2 M3 P3

ω1 1.2709 1.0 0.939 0.9323 0.9323 0.1714
ω2 1.2478 1.0 0.939 0.9495 0.9495 0.1102
ω3 1.2023 1.0 0.995 0.9855 0.9855 0.1495
ω4 1.1798 1.0 0.995 1.0043 1.0043 0.1489
ω5 1.1355 1.0 1.051 1.0434 1.0434 0.2694
ω6 1.1136 1.0 1.051 1.0640 1.0640 0.1509

To illustrate the application of formula (6.38), consider the contingent claim X with
time-3 payoff X(ωi) = i, i = 1, . . . ,6. The computation of π2 is easy, because π2 =
Z3

2E3[X |F2] = Z3
2X . Thus π2(ω6) = Z3

2(ω6)X(ω6) = 0.9804(6) = 5.8824, and similarly
π2(ωi) = 0.9091, 1.8518,2.8038, 3.8096 and 4.8075 for i = 1, . . . ,5, respectively.

For π1 = Z3
1E3[X |F1] we need the conditional probability distribution, but this is

easily computed from P3. For example,

E[X |{ω1,ω2}] = 1P3(ω = ω1|{ω1,ω2})+2P3(ω = ω2|{ω1,ω2})
=

P3(ω1)
P3(ω1)+P3(ω2)

+2
P3(ω2)

P3(ω1)+P3(ω2)
= 0.6087+2(0.3913) = 1.3913

so π1(ω2)= π1(ω2)= Z3
1(ω1)E3[X |{ω1,ω2}] = 0.84(1.3913)= 1.1687. Similarly, π1(ω3)=

π1(ω4) = 3.1141 and π1(ω5) = π1(ω6) = 5.0375.
To complete the computation of the process π , we have π0 = Z3

0E3[X |F0] = 0.844E3[X ],
so we simply use the probability measure P3 itself and compute π0 = 3.113.

Finally, using Ot = πt/Z3
t we immediately have the forward price process: O0 =

3.6884, O1(ω1) = O1(ω2) = 1.3913, O1(ω3) = O1(ω4) = 3.4990, O1(ω5) = O1(ω6) =
5.3590, and O2(ωi) = O3(ωi) = i for i = 1, . . . ,6. Using ot = E3[o3|Ft ] and the condi-
tional probabilities corresponding to P3, it is straightforward to verify that the process O
is indeed a martingale under P3.

Example 6.2 (continued) In order to prepare for the computation of some derivatives
having known time-2 payoffs, we are interested in the corresponding forward risk ad-
justed probability measure P2. With M2 = [Z2

0B2]−1 = [0.8905(1 + r1)(1 + r2)]−1 and
Q(ω) = 1/6 for all ω , the quantities of interest are:

ω B2 M2 P2

ω1 1.1554 0.9719 0.1620
ω2 1.1554 0.9719 0.1620
ω3 1.1236 0.9994 0.1666
ω4 1.1236 0.9994 0.1666
ω5 1.0918 1.0285 0.1714
ω6 1.0918 1.0285 0.1714
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Computing forward risk adjusted probability measures for lattice-type interest rate
models is not much easier than it is for general models. This is because although the spot
interest rate process r is a path-independent Markov chain, with each node of the Lattice
corresponding to a value of the spot rate at a point in time, the bank account process
B is not path-independent. The different paths leading up to a node will correspond to
different sequences of spot rates and thus to different bank account values. In general, for
a binomial lattice, Bt will take one of 2t−1 values, whereas there will only be t +1 nodes
for time t. Hence when computing the forward risk adjusted probability measure, the
lattice loses most of its simplifying advantages. The computations required for a lattice
model are not much easier than for a general model having about the same number
of states ω . En particular, there are no simple formulas for the forward risk adjusted
probability measures associated with the binomial lattice models of section 6.2.

Exercise 6.14. For example 6.1, verify with detailed calculations that:

(a) M is a martingale under Q with EQ[M3] = 1.

(b) The computed price process π satisfies (6.38) for all t and ω .

(c) The computed price process π satisfies the traditional risk neutral valuation formula
for all t and ω .

(d) The computed forward price process O is a martingale under P3.

Exercise 6.15. For example 6.1, suppose a derivative security has time-3 price π3(ωi) =
max{i−3,0}, i = 1, . . . ,6. Compute the time-0 price π0.

Exercise 6.16. For example 6.2, suppose there is an asset with time-2 prices π2(ω1) =
π2(ω2) = 7, π2(ω3) = π2(ω4) = 9, and π2(ω5) = π2(ω6) =−1. Show that π0 = 4.3848.
and compute π1.

Exercise 6.17. For example 6.2, specify the Q-martingale M and the forward risk ad-
justed probability measure P3 corresponding to τ = 3.

Exercise 6.18. With the process M as in (6.36), show that the process X = {Xt ; t =
0, . . . ,τ} is a martingale under Pτ , where Xt(ω) = 1/Mt(ω), all ω and t.

Exercise 6.19. If X = 1A is the time-τ payoff of a contingent claim, where A ∈Fτ , then
show its time-0 price is π0 = Zτ

0Pτ(A).

6.5 Coupon Bonds and Bond Options

Consider a European call option on the zero coupon bond Zs having time-τ payoff:

X = (Zs
τ −K)+, 0≤ τ < s≤ T
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Our aim is to compute the time-t price πt of X for t < τ . Using (6.38), this is given by

πt = Zτ
t Eτ

[
(Zs

τ −K)+|Ft
]
, t ≤ τ (6.39)

where Eτ denotes expectation with respect to the forward risk adjusted probability mea-
sure Pτ . Hence we first need the conditional probability distribution of Zs

τ under Pτ , and
then we can compute the conditional expectation.

Alternatively, of course, we can use the customary risk neutral valuation formula:

πt = BtEQ
[
(Zs

τ −K)+/Bτ |Ft
]
, t ≤ τ (6.40)

The specific circumstances will dictate which approach will be the easiest from the com-
putational standpoint.

Example 6.2 (continued) For a general model such as this, the forward risk adjusted
approach is often the best, especially if one is planning to value more than one derivative
having the same payoff time. Suppose K = 0.95, t = 0, τ = 2, and s = 3. Then (6.39)
gives

π0 = 0.8905E2
[
(Z3

2 −0.95)+
]

= 0.8905{0.1666(0.0024)+0.1714(0.0115)+0.1714(0.0304)}
= 0.0068

Alternatively, using (6.40) we have

π0 = EQ
[
(Z3

2 −0.95)+/B2
]

= 0.1667(0.0024)/1.1236+0.1667(0.0115)/1.0918+0.1667(0.0304)/1.0918

= 0.0068

It was remarked at the end of section 6.4 that lattice models of interest rates offer
no simple formulas for forward risk adjusted probability measures because the bank
account process is path dependent. For the same reason, the same remark holds true in
regard to the use of the risk neutral formula (6.40): there are no simple formulas for the
price of contingent claims such as our call option on a bond when the underlying model
is a lattice model as in section 6.2.

A coupon bond is just a linear combination of zero coupon bonds. To see this, suppose
a coupon bond is scheduled to pay Cn dollars at time tn for n = 1, . . . ,N, where t < t1 <

· · · < tN . By either the risk neutral valuation formula (6.1) or the forward risk adjusted
formula (6.38), the time-t price of the contingent claim which pays Cn at time tn is
precisely Ztn

t Cn. Moreover, the price of the cash flow is just the sum of the price of each
component, so with βt denoting the time-t price of this bond, we have

βt =
N

∑
n=1

Ztn
t Cn
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In words, the price of the coupon bond is equal to the expected discounted value of the
cash flow, where expectation is with respect to the risk neutral probability measure.

Example 6.1 (continued) Suppose C1 = 7, t1 = 2, C2 = 107, and t2 = 3. Then β0 =
7Z2

0 +107Z3
0 = 96.559 and

β1(ω) = 7Z2
1 +107Z3

1 =





96.302, ω = ω1,ω2

101.834, ω = ω3,ω4

107.376, ω = ω5,ω6

Now suppose we have a European call option on this coupon bond. The time-τ payoff,
where t < τ < t1, is, as usual, X = (βτ −K)+. For the time-t price, we can use (6.1),
giving

πt = BtEQ

[(
N

∑
n=1

Ztn
τ Cn−K

)+ /
Bτ

∣∣∣∣∣Ft

]
(6.41)

Or we can use (6.38), giving

πt = Zτ
t Eτ

[(
N

∑
n=1

Ztn
τ Cn−K

)+ /
Bτ

∣∣∣∣∣Ft

]
(6.42)

There are rarely any computational shortcuts with either the forward risk adjusted or the
risk neutral approach.

Example 6.1 (continued) Suppose we have a call option on the coupon bond with
exercise price K = 100 and exercise date τ = 1. Equation (6.41) gives for the time-0
price

π0 = (0.1517+0.1483)(1.834/1.06)+(0.2582+0.1418)(7.376/1.06)

= 3.3025

Exercise 6.20. Let c and p denote the time-0 prices of a European call and a put, re-
spectively, both having the same exercise date τ , the same exercise price K, and the
same underlying, namely, a zero coupon bond with maturity date s > t. Show that the
following put-call parity relationship holds: c− p = Zs

0−KZτ
0 . Compute p in the case

of example 6.2 when K = 0.95, τ = 2, and s = 3. Verify the put-call parity relationship
for this particular put and the corresponding call.

Exercise 6.21. For example 6.1, compute the time-0 prices of the European put and
call having exercise price K = 0.95, exercise date τ = 2, and underlying Z3. Verify the
corresponding put-call parity relationship.
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Exercise 6.22. For example 6.2, compute the time-0 and time-1 prices of the coupon
bond which pays 8 dollars at time 2 and 108 dollars at time 3. Compute the time-0
prices of the European put and call on this bond, where the exercise price is K = 102
and the exercise date is τ = 1.

6.6 Swaps and Swaptions

Swaps are agreements between two parties where the first pays a floating rate to the
second, while the second pays a fixed rate to the first, with both payments being based
on a common principal amount. The payments are made each period during an interval
of time. The floating rate payment is based on the spot rate r, with the value actually
used being either the one for the period just ended (the swap is settled in arrears) or the
one for the period about to begin (the swap is settled in advance).

With ordinary swaps the initial floating rate payment is based on the spot rate when
the agreement is made; this is true whether it is settled in arrears or in advance. There
are also forward start swaps where the initial payments are based on a spot rate that is
subsequent to the one which exists when the agreement is reached.

The value of a swap is just the expected present value of the net cash flow, so the
value to one party is the negative of the value to the opposite party. With a payer swap
the value is from the perspective of the party who pays the fixed rate and receives the
floating rate. A receiver swap is the opposite.

This section will focus on a payer forward start swap on principal 1 settled each
period in arrears, leaving other cases for the reader. The fixed interest rate is denoted
K. With the initial floating rate payment based on rτ , the party will pay K dollars and
receive rτ dollars at time τ . Similar payments will occur each period through time-s, so
the time-t value of this payer forward start swap is

πt = EQ

[ s

∑
u=τ

Bt

Bu
(ru−K)

∣∣∣∣Ft

]
, t < τ ≤ s≤ T (6.43)

It turns out there is a simple and useful formula for πt . Since Zu
u−1 = (1+ ru)−1, this

value equals

πt = EQ

[ s

∑
u=τ

Bt

Bu

(
1

Zu
u−1

− (1+K)
)∣∣∣∣Ft

]

= EQ

[ s

∑
u=τ

(
Bt

BuZu
u−1

)∣∣∣∣Ft

]
− (1+K)EQ

[ s

∑
u=τ

Bt

Bu

∣∣∣∣Ft

]

=
s

∑
u=τ

EQ

[
Bt

BuZu
u−1

∣∣∣∣Ft

]
− (1+K)

s

∑
u=τ

Zu
t
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where the last equality uses equation (6.2). Now using Zu
u−1 = (1 + ru)−1 = Bu−1/Bu

again, one obtains

πt =
s

∑
u=τ

EQ

[
Bt

BuZu
u−1

∣∣∣∣Ft

]
− (1+K)

s

∑
u=τ

Zu
t

=
s

∑
u=τ

Zu−1
t − (1+K)

s

∑
u=τ

Zu
t

= Zτ−1
t −K

s−1

∑
u=τ

Zu
t − (1+K)Zs

t

= Zτ−1
t −

s

∑
u=τ

CuZu
t

where the cash flow variables Cu = K for u = τ, . . . ,s− 1 and Cs = 1 + K have been
introduced. Thus the price of the forward swap is given by a simple present value cal-
culation. In particular, in the case of an ordinary swap, for which τ = t + 1, the time-t
price is

πt = 1−
s

∑
u=t+1

CuZu
t (6.44)

This should be interpreted as one minus the time-t price of a coupon paying bond, a
bond having face value one and coupon rate K.

The forward swap rate κ is that value of the fixed rate K which makes the time-t
value of the forward swap zero, that is,

κ = κ(t,τ,s)≡ Zτ−1
t −Zs

t

Zτ
t + · · ·+Zs

t

The (ordinary) swap rate is simply the special case when τ = t +1, that is, κ(t, t +1,s).

Example 6.1 (continued) With K = 0.06, r = 0, τ = 1, and s = 3, the time-0 price
of the payer swap is

π0 = Z0
0 −KZ1

0 −KZ2
0 − (1+K)Z3

0

= 1−0.06(0.9434)−0.06(0.893)−1.06(0.844)

=−0.0049

in which case the price of the receiver swap is 0.0049. The swap rate is

κ =
Z0

0 −Z3
0

Z1
0 +Z2

0 +Z3
0

=
1−0.844

0.9434+0.893+0.844
= 0.0582

A payer swaption is like a European call on the time τ−1 value of the corresponding
payer forward start swap, where the exercise date is τ−1 and the exercise price is zero.
A receiver swaption is defined in a similar manner with respect to the receiver swap.
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The payer and receiver swaptions thus have respective time-t prices (t < τ)

EQ

[
Bt

Bτ−1

(
EQ

[ s

∑
u=τ

Bτ−1

Bu
(ru−K)

∣∣∣∣Fτ−1

])+
∣∣∣∣∣Ft

]

and

EQ

[
Bt

Bτ−1

(
EQ

[ s

∑
u=τ

Bτ−1

Bu
(K− ru)

∣∣∣∣Fτ−1

])+
∣∣∣∣∣Ft

]

Note the payer swaption price minus the receiver swaption price equals

EQ

[
Bt

Bτ−1
EQ

[ s

∑
u=τ

Bτ−1

Bu
(ru−K)

∣∣∣∣Fτ−1

]∣∣∣∣Ft

]

= EQ

[
Bt

Bτ−1

s

∑
u=τ

Bτ−1

Bu
(ru−K)

∣∣∣∣Ft

]

= EQ

[ s

∑
u=τ

Bt

Bu
(ru−K)

∣∣∣∣Ft

]

which is the time-t price of a forward start swap. Thus the following parity relationship
holds:

payer swaption − receiver swaption = forward swap (6.45)

In view of equation (6.44), the time-(τ−1) price of the payer swap is given by

πτ−1 = 1−
s

∑
u=τ

CuZu
τ−1

so another expression for the time-t price of the payer swaption is

EQ

[
Bt

Bτ−1

(
1−

s

∑
u=τ

CuZu
τ−1

)+
∣∣∣∣∣Ft

]

This provides another interpretation:
A payer swaption is the same as a put option on a coupon bond, where the
exercise date is τ−1 and the exercise price is one. This coupon bond has
face value one and coupon rate K.

(6.46)

Similarly, receiver swaptions can be interpreted as call options on coupon bonds.
Still another interpretation can be obtained:
A payer (receiver) swaption is like a portfolio of call (respectively, put)
options on the swap rate κ(τ−1,τ,s).

(6.47)

To be precise, suppose for each time u = τ,τ +1, . . . ,s, there is a call option with time-u
payoff [κ(τ−1,s)−K]+. To see that this portfolio is like a payer swaption, consider its
time-(τ−1) value, namely

EQ

[ s

∑
u=τ

Bτ−1

Bu
[κ(τ−1,s)−K]+

∣∣∣∣Fτ−1

]
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It follows that the time-t value of this portfolio is

EQ

[
Bt

Bτ−1
EQ

[ s

∑
u=τ

Bτ−1

Bu
[κ(τ−1,s)−K]+

∣∣∣∣Fτ−1

]∣∣∣∣Ft

]

= EQ

[
Bt

Bτ−1
[κ(τ−1,s)−K]+EQ

[ s

∑
u=τ

Bτ−1

Bu

∣∣∣∣Fτ−1

]∣∣∣∣Ft

]

= EQ

[
Bt

Bτ−1
[κ(τ−1,s)−K]+

s

∑
u=τ

Zu
τ−1

∣∣∣∣Ft

]

But κ(τ−1,τ,s)[Zτ
τ−1 + · · ·+Zs

τ−1] = Zτ−1
τ−1−Zs

τ−1 by the definition of the swap rate, so
substituting this in the preceding expression yields

EQ

[
Bt

Bτ−1

(
1−Zs

τ−1−K
s

∑
u=τ

Zu
τ−1

)+
∣∣∣∣∣Ft

]

= EQ

[
Bt

Bτ−1

(
1−

s

∑
u=τ

CuZu
τ−1

)+
∣∣∣∣∣Ft

]

which is recognized to be the time-t price of the payer swaption by (6.46).

Example 6.8. With K = 0.06, t = 1, τ = 2, and s = 3, the time-t price of the payer swap
is

π1 = 1−KZ2
1 − (1+K)Z3

1

=





1−0.06(0.9174)−1.06(0.8417) = 0.0528, ω = ω1,ω2

1−0.06(0.9434)−1.06(0.8901) =−0.0001, ω = ω3,ω4

1−0.06(0.9709)−1.06(0.9427) =−0.0576, ω = ω5,ω6

The time-0 price of the payer swaption is

EQ

[
B0

B1
(π1)+

]
= (0.1667+0.1667)

[
1

1.06
0.528

]
= 0.0166

The time-0 price of the receiver swaption is

EQ

[
B0

B1
(−π1)+

]
= 2(0.1667)

0.0001
1.06

+2(0.1667)
0.0576
1.06

= 0.0181

Note that the time-0 price of the forward start swap is

0.1667+0.1667
1.06

[0.0528−0.0001−00576] =−0.0015

so, indeed, the parity relationship (6.45) is satisfied.
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To verify interpretation (6.47). note that we have

κ = κ(τ−1,τ,s) = κ(1,2,3) =
Z1

1 −Z3
1

Z2
1 +Z3

1

=





1−0.8417
0.9174+0.8417 = 0.09, ω = ω1,ω2

1−0.8901
0.9434+0.8901 = 0.06, ω = ω3,ω4

1−0.9427
0.9709+0.9427 = 0.03, ω = ω5,ω6

so

(κ−K)+ = (κ−0.06)+ =

{
0.03, ω = ω1,ω2

0, otherwise

The portfolio of interest has two options, one paying off at time t = 2, the other paying
off at t = 3. Each pays 0.03 dollars in the event A ≡ {ω1,ω2} but pays zero otherwise.
The time-0 present value of this cash flow is

EQ

[
0.03
B2

1A

]
+EQ

[
0.03
B3

1A

]

=
2(0.1667)(0.03)

1.06(1.09)
+

0.1667(0.03)
1.06(1.09)(1.1)

+
0.1667(0.03)

1.06(1.09)(1.08)
= 0.0166

which equals the time-0 price of the payer swaption, in accordance with (6.47).

Exercise 6.23. For the model in example 6.2 with K = 0.06, τ = 1, and s = 3, compute
the time-0 prices of the payer and receiver swaps, and compute the swap rate at t = 0.

Exercise 6.24. For the model in example 6.1 with K = 0.06, τ = 2, and s = 3

(a) Compute the time-1 prices of the payer swap.

(b) Compute the time-0 price of the payer forward start swap.

(c) Compute the time-0 price of the payer swaption.

(d) Compute the time-0 price of the receiver swaption, and verify parity relationship
(6.45).

(e) Compute the swap rate κ(1,2,3).

(f) Verify (6.47) by specifying the appropriate option portfolio and computing its time-
O value.

Exercise 6.25. Show that the time-t price of a payer forward start swap settled in ad-
vance is

πt = EQ

[ s

∑
u=τ

Bt

Bu−1
(ru−K)

∣∣∣∣Ft

]
, t < τ ≤ s≤ T
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6.7 Caps and Floors

A caplet is a European call option on the spot interest rate r at a fixed point in time. As
with swaps, caplets can be settled in arrears or in advance. In the former case, the time-τ
payoff of a caplet is simply (rτ −K)+, where K is the specified strike or exercise price.
For t ≤ τ the time-t price of this caplet is

πt = BtEQ
[
(rτ −K)+/Bτ |Ft

]
= Zτ

t Eτ
[
(rτ −K)+|Ft

]

A cap is a strip of caplets, all having a common exercise price and with one for each
time period in an interval of time. In general, some caplets in the cap will pay off and
others will not, depending on whether the spot rate exceeds the strike. As with swaps,
there are both ordinary and forward start caps, depending on whether the initial caplet
corresponds to the current spot rate. The time-t price of a forward start cap settled in
arrears is

πt = Bt

s

∑
u=τ

EQ
[
(ru−K)+/Bu|Ft

]
, t < τ ≤ s≤ T (6.48)

The time-t price of an ordinary cap is given by the same formula with τ = t +1.

Example 6.1 (continued) Suppose the exercise price K = 0.06 and consider an or-
dinary cap settled in arrears. The payoff of the τ = 1 caplet is identical to zero, so its
time-0 price is zero. The payoff of the τ = 2 caplet is

(
r2(ω)−0.06

)+ =

{
0.03, ω = ω1,ω2

0, otherwise

so its time-0 price is

EQ
[
(r2−0.06)+/B2

]
= (0.1839+0.1161)

0.03
(1.06)(1.09)

= 0.0078

The payoff of the τ = 3 caplet is

(
r3(ω)−0.06

)+ =





0.04, ω = ω1,

0.02, ω = ω2,

0.01, ω = ω3,

0, otherwise

so its time-0 price is

EQ
[
(r3−0.06)+/B3

]
=

0.1839(0.04)
1.06(1.09)(1.1)

+
0.1161(0.02)

1.06(1.09)(1.08)
+

0.1517(0.01)
1.06(1.06)(1.07)

= 0.0091

Thus the time-0 price of the corresponding cap with τ = 1 and s = 3 is 0.0078+0.0091 =
0.0169.



226 CHAPTER 6. BONDS AND INTEREST RATE DERIVATIVES

Floorlets are defined in the same manner as caplets, only they are put options on
the spot rate. Similarly, floors are strips of floorlets and thus are analogous to caps. In
particular, the time-t price of a forward start floor settled in arrears is

πt = Bt

s

∑
u=τ

EQ
[
(K− ru)+/Bu|Ft

]
, t < τ ≤ s≤ T (6.49)

Comparing this with (6.43) and (6.48) immediately gives the following parity relation-
ship:

The price of a cap minus the price of a floor equals the price of a swap. (6.50)

Example 6.1 (continued) Consider the floor that is settled in arrears with K = 0.06,
τ = 1, and s = 3. Since r1 = 0.06, the τ = 1 floorlet has time-0 price equal to zero. The
τ = 2 floorlet has time-O price

EQ
[
(0.06− r2)+/B2

]
= (0.2582+0.1418)

0.03
(1.06)(1.03)

= 0.011

The τ = 3 floorlet has time-0 price

0.1483(.01)
1.06(1.06)(1.05)

+
0.2582(.02)

1.06(1.03)(1.04)
+

0.1418(.04)
1.06(1.03)(1.02)

= 0.0108

Thus the time-0 price of the floor is 0.011 + 0.0108 = 0.0218. Note this is consistent
with parity relationship (6.50), because the price of the corresponding cap is 0.0169,
whereas (see section 6.6) −0.0049 is the price of the corresponding swap.

A caption is a put or call option whose underlying security is a forward cap. A
floortion is a put or call option whose underlying security is a forward floor. These
are examples of what are called compound options, that is, options whose underlying
securities are themselves options.

Normally the exercise date of the caption or floortion is prior to the time associated
with the initial caplet or floorlet in the underlying. Moreover, the strike of the caption or
floortion is generally not the same as the strike of the cap or floor.

The computation of the price of a caption or floortion is best viewed as a two-step
procedure. First you compute the probability distribution of the caption or floortion pay-
off under either the risk neutral or the forward risk adjusted probability measure. In
other words, you first compute the probability distribution of the contingent claim. Then
you compute in a standard way the price of this contingent claim. This is illustrated in
the following example.

Example 6.1 (continued) First consider a forward start cap with K = 0.06, τ = 2 and
s = 3. The τ = 2 caplet has time-1 price

B1EQ
[
(r2−0.06)+/B2|F1

]
=

{
1(0.03)11.09 = 0.0275, ω = ω1,ω2

0, otherwise
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The τ = 3 caplet has time-1 price

B1EQ
[
(r3−0.06)+/B3|F1

]
=





0.613(0.04)
1.09(1.1) + 0.387(0.02)

1.09(1.08) = 0.0271, ω = ω1,ω2
0.5057(0.01)

1.06(1.07) = 0.0045, ω = ω3,ω4

0, ω = ω5,ω6

where 0.613 equals the conditional probability Q(ω1|{ω1,ω2}), and so forth. Thus the
time-1 price of this forward start cap is

π1 =





0.0275+0.0271 = 0.0546, ω = ω1,ω2

0.0045, ω = ω3,ω4

0, ω = ω5,ω6

Notice that the time-0 price of this cap is

π0 = EQ[π1/B1] =
0.3(0.0546)

1.06
+

0.3(0.0045)
1.06

= 0.0168

as was computed earlier in a different manner.
Now consider a caption, in particular, a put on this cap with strike 0.02 and exercise

date τ = 1. Its time-1 payoff is

(0.02−π1)+ =





0, ω = ω1,ω2

0.0155, ω = ω3,ω4

0.02, ω = ω5,ω6

in which case the time-0 price of the caption is

EQ
[
(0.02−π1)+/B1

]
=

0.3(0.0155)
1.06

+
0.4(0.02)

1.06
= 0.0119

Similarly, the time-0 price of the caption which is a call having the same strike and
exercise date is

EQ
[
(π1−0.02)+/B1

]
=

0.3(0.0346)
1.06

= 0.0098

Exercise 6.26. Consider the model in example 6.2.

(a) Compute the time-0 and time-1 prices of the forward start cap that is settled in arrears
with K = 0.06, τ = 2, and s = 3.

(b) Compute the time-0 and time-1 prices of the forward start floor that is settled in
arrears with the same parameters.

(c) Verify that the time-0 prices in (a) and (b) satisfy the parity relationship (6.50).
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(d) Compute the time-0 prices of the put and call captions, where the underlying is as in
(a), the strike is 0.01, and the exercise date is τ = 1.

(e) Compute the time-0 prices of the put and call floortions, where the underlying is as
in (b), the strike is 0.01, and the exercise date is τ = 1.



Chapter 7

Models With Infinite Sample Spaces

7.1 Finite Horizon Models

The fundamental theorem of asset pricing says that there are no arbitrage opportunities if
and only if there exists a risk neutral probability measure. In earlier chapters this princi-
ple was shown true for single and multiperiod models under the critical assumption that
the underlying sample space Ω has a finite number of elements. This assumption is cru-
cial, because it enables one to apply simple results of linear programming or, more gen-
erally, to use simple versions of the separating hyperplane theorem for problems posed
in terms of finite dimensional spaces. But when the sample space Ω has a countably
infinite or an uncountably infinite number of elements, the space of random variables
representing terminal wealth will be a space of infinite dimension. There are certainly
separating hyperplane theorems for these infinite dimensional settings, but a straightfor-
ward application of such a theorem will break down owing to technical complications.
A more delicate analysis is required.

It turns out the fundamental theorem of asset pricing remains true in the case of infi-
nite sample spaces Ω provided the number T of trading periods is finite. The purpose of
this section is to establish this result. As will be seen in the following section, however,
the theorem breaks down when the number T of trading periods is infinite.

Some results in this chapter are more technical than much of the earlier chapters. To
begin with, in progressing to an infinite sample space it is necessary to generalize the
concept of the filtration that is used as the information submodel. Recall that a collection
F of subsets of Ω is called an algebra on Ω if

1. Ω ∈F

2. F ∈F =⇒ Fc = Ω\F ∈F

3. F and G ∈F =⇒ F ∪G ∈F

The collection F is called a σ -algebra on Ω if, in addition

4. F1,F2, . . . ∈F =⇒
∞⋃

n=1
Fn ∈F .

229
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In words, (4) says that countable unions of subsets in F are also in F . If Ω is finite,
then (4) is superfluous, because Ω has only finitely many subsets. But if Ω has infinitely
many subsets then (3) does not imply (4). Condition (4)is necessary for what needs to
be done.

Our aim is to use σ -algebras as models for the information that is known to the
investors at the various points in time. Recall that algebras were used for this purpose in
the finite sample space context. Moreover, recall that when Ω is finite, algebras on Ω are
equivalent to partitions of Ω, and this led to a very intuitive interpretation of algebras as
models of the information known to the investors. Unfortunately, the analogous result
does not hold for σ -algebras on Ω when Ω has an infinite number of elements. Recall
from chapter 3 that for A⊂Ω to be an element of the partition P corresponding to F ,
one must have A ∈F as well as {B ∈F ,A 6= B, and B ⊂ A} ⇒ B = /0. But applying
this requirement to infinite sample spaces produces silly, worthless results. For instance,
if Ω = [0,1] and F includes all the open intervals of the form (a,b). where a and b are
rational numbers, then this requirement implies the corresponding partition includes all
the rational numbers of the unit interval as distinct elements.

Nevertheless, we will use σ -algebras to model the information known to the eco-
nomic agents at individual points in time. The economic intuition to justify this approach
is dubious, since the partition interpretation was abandoned. We must soldier on, being
content with the view that σ -algebras are natural extensions of the concept that made
good sense when Ω was finite.

As with the case of a finite sample space, the information flow in the securities market
will be modeled by a filtration F = {Ft ; t = 0,1, . . . ,T}, where {Ft} is an increasing
sequence of σ -algebras. In particular, Ft−1 ⊆Ft for t = 1, . . . ,T , because the investors
learn as time goes on. The probability measure P is such that the probability P(A) is
well defined for each A ∈FT .

The random variable X is said to be measurable with respect to the σ -algebra F if,
for every real number x, the subset {ω ∈ Ω : X(ω)≤ x} is an element of the σ -algebra
F . In this case one writes X ∈F . The stochastic process X = {Xt ; t = 0, . . . ,T} is said
to be adapted if Xt ∈Ft for all t. The stochastic process H = {Ht ; t = 1, . . . ,T} is said
to be predictable if Ht ∈Ft−1 for all t.

At this point it is convenient to introduce a new and rather technical concept. When
speaking about equations, inequalities, and the like involving random variables, it is
often appropriate to include the phrase almost surely. This means that the equation or
whatever holds for all ω ∈Ω except, possibly, for some ω ∈ A, where A is some event in
FT such that P(A) = 0. In other words, although the relationship in question might not
hold for all ω ∈Ω, the only exceptions are inconsequential and can be ignored. Almost
surely is often abbreviated a.s.

The rest of the securities market model is largely the same as before. There is a bank
account process B = {Bt ; t = 0,1, . . . ,T}, an adapted, non-decreasing stochastic process
with B0 = 1. There are N risky security processes Sn = {Sn(t); t = 0,1, . . . ,T}, where Sn
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is a non-negative, adapted stochastic process for each n = 1,2, . . . ,N. And there are N
discounted price processes S∗n = {S∗n(t); t = 0,1, . . . ,T}, where S∗n(t) ≡ Sn(t)/Bt for all
t.

We are now ready to tackle the fundamental theorem of asset pricing. This will be
done after first presenting a preliminary result which is so technical that its explanation
will be omitted.1 Here Y and Z are each random variables taking values in RN , ‖Y‖
denotes the Euclidean norm of the vector Y , and Z ·Y denotes the inner product of the
vectors Y and Z.

Suppose G and H are two σ -algebras with G ⊆H ⊆FT . Let Y ∈H be
such that

(7.1)

{Z ∈ G and Z ·Y ≥ 0 a.s.}=⇒{Z ·Y = 0 a.s.} (7.2)

Then there exists a scalar-valued random variable D ∈H such that:

0 < D≤ 1, a.s. (7.3)

E[D‖Y‖] < ∞, and (7.4)

E[Y D|G ] = 0 (7.5)

In words, (7.2) says that the only random variables Z ∈ G satisfying the inequality
actually satisfy the equality. Shortly it will be seen that this is the same as saying there
are no one-period arbitrage opportunities. The random variable D will play the role of
a state price density and will be used in the construction of the risk neutral probability
measure.

The trading strategy H, the value process V , the discounted value process V ∗, and
the discounted gains process G∗ are defined in exactly the same manner as in the case
of a finite sample space Ω (see section 3.1). Moreover, arbitrage opportunities are also
defined the same way: the self-financing trading strategy H is an arbitrage opportunity
if (1) V0 = 0, (2) VT ≥ 0, and (3) E[VT ] > 0. Just as with (3.17), an equivalent condition
for H to be an arbitrage opportunity is for the discounted gains process to satisfy G∗

T ≥ 0
and E[G∗

T ] > 0.
In view of this latter characterization of arbitrage opportunities, it is not surprising

that the absence of arbitrage opportunities implies a condition that resembles (7.2). To
prepare for this, let S∗ = {S∗t ; t = 0, . . . ,T} denote the RN-valued process whose nth
component is S∗n, the discounted price process for the nth risky security, n = 1, . . . ,N.
There should not be any confusion about whether the subscripts here represent time t or
security n. It is convenient to denote ∆S∗t = S∗t −S∗t−1, a RN-valued random variable.

If there are no arbitrage opportunities, then for all t = {1,2, . . . ,T} and all
RN-valued random variables Z,

(7.6)

1This result and much of the subsequent development is based on Dalang, Morton and Willinger (1990). See
also Schachermayer (1992).
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{Z ∈Ft−1 and Z ·∆S∗t ≥ 0 a.s.}=⇒{Z ·∆S∗t = 0 a.s.} (7.7)

Principle (7.6) can be verified by contradiction, because if there exists some t and
some Z = (Z1, . . . ,ZN) ∈Ft−1 such that Z ·∆S∗t ≥ 0 a.s. and P(Z ·∆S∗t > 0) > 0, then
one can construct an arbitrage opportunity, as will now be shown.

Let A ∈Ft−1 denote the set {ω ∈ Ω : P(Z ·∆S∗t > 0|Ft−1)(ω) > 0}, and note that
P(A) > 0 by assumption. The arbitrage opportunity H is obtained by taking Hn(s)(ω) =
0 for all s < t, all ω ∈Ω, and n = 0,1, . . . ,N; by taking

Hn(t)(ω) =





Zn(ω), ω ∈ A, n = 1, . . . ,N

−Z ·S∗t−1(ω), ω ∈ A, n = 0

0, ω ∈ Ac

and by taking

Hn(s)(ω) =

{
Vt(ω), n = 0 and ω ∈ A

0, otherwise

for s = t +1, . . . ,T . Clearly H is predictable and V0 = 0. It is left for the reader to verify
that H is self-financing (exercise 7.1). This strategy takes the time-t wealth Vt and holds
it in the bank account, so VT ≥ 0 if Vt ≥ 0. But Vt(ω) = Z ·∆S∗t (ω)≥ 0 if ω ∈ A, whereas
Vt(ω) = 0, otherwise, so indeed VT ≥ 0. Moreover, E[VT ] > 0 if E[Vt ] > 0. But

E[Vt ] = E[1AZ ·∆S∗t ] = E
[
1AE[Z ·∆S∗t |Ft−1]

]
> 0

so all this implies H is an arbitrage opportunity, which is a contradiction.
Principles (7.1) and (7.6) can now be used to show that the absence of arbitrage

opportunities implies the existence of a risk neutral probability measure. A risk neutral
probability measure is defined in the same way as in the case of a finite sample space;
it is a probability measure Q, equivalent to P, under which the discounted price of each
risky security is a martingale. By equivalent, one means that for each event A ∈FT the
probability P(A) = 0 if and only if Q(A) = 0. In words, there is agreement between the
two probability measures about which events can and cannot happen.

To see why no arbitrage implies the existence of a risk neutral probability measure Q,
I will indicate how to construct this measure. Begin by setting FT+1 = FT , S∗T+1 = S∗T ,
DT+1 = 1, and YT+1 = 0. The scalar-valued random variables D1, . . . ,DT and the RN-
valued random variables Y1, . . . ,YT are now defined recursively, backwards in time. For
example, suppose Dt+1, . . . ,DT and Yt+1, . . . ,YT have been defined such that

Dk is Fk measurable, t +1≤ k ≤ T +1 (7.8)

Yk = ∆S∗kE[Dk+1 . . .DT+1|Fk] a.s., t +1≤ k ≤ T (7.9)

0 < Dk ≤ 1 a.s., t +1≤ k ≤ T +1 (7.10)
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E[Dk‖Yk‖] < ∞, t +1≤ k ≤ T, and (7.11)

E[YkDk|Fk−1] = 0 a.s., t +1≤ k ≤ T (7.12)

Now use principle (7.1) with G = Ft−1, H = Ft , and Y = Yt , where Yt is as in (7.9)
with k = t. Note that Yt ∈Ft . Moreover, because of (7.6), property (7.2) holds. Thus by
(7.1) there exists a scalar-valued random variable Dt such that equations (7.8), (7.10),
(7.11), and (7.12) all hold with k = t.

Having specified D1, . . . ,DT , the next step is to define a few more items. Set

D0 ≡ 1
1+‖S∗0‖

and D≡ D0D1 . . .DT

Note that 0 < D ≤ 1 a.s. In addition, define what will turn out to be the risk neutral
probability measure by taking

Q(A)≡ E[D1A]
E[D]

, all events A ∈FT

that is,

EQ[X ]≡ E[DX ]
E[D]

, all random variables X ∈FT

Clearly Q is a probability measure that is equivalent to P. It remains to show that the
discounted risky security prices are martingales under Q. There are two parts to this.
The first is to show the usual conditional expected value relationship. The other is to
show that the discounted risky price process is integrable under Q, that is, to show that
various expected values of this process are well-defined and finite.

To verify Q-integrability, we have

EQ

[
‖S∗0‖

]
=

1
E[D]

E
[
D‖S∗0‖

]
=

1
E[D]

E
[
D0D1 . . .DT‖S∗0‖

]

≤ 1
E[D]

E
[
D‖S∗0‖

]
≤ 1

E[D]
< ∞

We also have

EQ

[
‖S∗t −S∗t−1‖

]
=

1
E[D]

E
[
D‖S∗t −S∗t−1‖

]

=
1

E[D]
E

[
D0 . . .Dt‖S∗t −S∗t−1‖Dt+1 . . .DT

]

=
1

E[D]
E

[
D0 . . .Dt‖S∗t −S∗t−1‖E[Dt+1 . . .DT |Ft ]

]

=
1

E[D]
E

[
D0 . . .Dt‖Yt‖

]

≤ 1
E[D]

E
[
Dt‖Yt‖

]

But this last expression is finite by (7.11), so S∗ is Q-integrable.
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It remains to show EQ[S∗t |Ft−1] = S∗t−1 for all t, that is, to show EQ[∆S∗t |Ft−1] = 0
for all t. We have

EQ
[
∆S∗t |Ft−1

]
=

1
E[D]

E
[
D∆S∗t |Ft−1

]

=
1

E[D]
E

[
D0 . . .Dt−1Dt(∆S∗t )Dt+1 . . .DT |Ft−1

]

=
D0 . . .Dt−1

E[D]
E

[
Dt(∆S∗t )E[Dt+1 . . .DT |FT ]|Ft−1

]

=
D0 . . .Dt−1

E[D]
E

[
DtYt |Ft−1

]

But this last expression equals 0 by (7.12), so S∗ is indeed a martingale under Q.
In summary, if there are no arbitrage opportunities, then there exists a risk neutral

probability measure. The converse is immediate, by the same argument as used for the
finite sample space case. Hence we have established that the following is true even if the
sample space Ω has infinitely many elements:

Fundamental Theorem of Asset Pricing Suppose the number of trading
periods T is finite. Then there are no arbitrage opportunities if and only if
there exists a risk neutral probability measure.

(7.13)

Exercise 7.1. The statement was made that the arbitrage opportunity constructed in the
explanation of(7.6) is a self-financing trading strategy. Verify this assertion.

Exercise 7.2. Suppose there is a single security S with ∆St = exp{σWt + µ}, where
{Wt} is a sequence of independent standard normal random variables and where µ and
σ are positive constants. In addition, suppose the spot interest rate is the constant r ≥ 0.
Derive a risk neutral probability measure, first for the case T = 1, then for the general
case T < ∞.

7.2 Infinite Horizon Models

Finite horizon models with infinite sample spaces are not much different from finite
horizon models with finite sample spaces, because the fundamental theorem of asset
pricing holds in both cases. But this theorem is not quite true when there is an infinite
number of trading periods, and there are also significant modeling issues associated with
admissibility of trading strategies. This section will examine these and related matters.

First of all, what is meant by an infinite horizon model? For finite horizon models
it was tacitly assumed that the time index t keeps track of both the number of periods
as well as the elapsed time by some unit of measure such as months or years. This
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implies the time periods are of equal durations, such as one year. Retaining this set-up
for an infinite horizon problem leads to the choice T = ∞, meaning there is a (countably)
infinite number of trading periods, all with the same length.

There is an alternative approach, however, that is useful for some purposes: there is a
finite planning horizon, but there is also a (countably) infinite number of trading periods
before the planning horizon. Here, of course, the various periods have different lengths,
as measured by clock time. For instance, with a planning horizon of one year, period t
would last for (1/2)t years, t = 1,2, . . . Either way (and, admittedly, the terminology is
not entirely consistent), the defining feature of infinite horizon models is the (countably)
infinite number of trading periods; whether the planning horizon measured in clock time
is finite and whether all the periods are of the same length of clock time are unimportant
issues for the purposes of this section. Throughout, one should think of t as the counter
for the number of periods, thereby suggesting T = ∞.

Building the security price processes for the infinite horizon model presents no great
difficulties. Needless to say, the sample space Ω will necessarily be infinite. With the
specification of the probability space (Ω,F ,P), the filtration model of the information,
F= {Ft ; t = 0,1, . . .}, will be a collection of σ -algebras with Ft ⊆Ft+1 ⊆ ·· · ⊆F for
all t. The security price processes will then be, as usual, non-negative, adapted stochastic
processes.

When it comes to the specification of the trading strategies, however, we quickly
encounter a complication. As usual, we will want to require the trading strategies to
be predictable stochastic processes, for this will enable the investors to use all the past
and present available information without being able to look into the future. But without
additional restrictions, the opportunity to trade infinitely many times will allow investors
to make arbitrage profits, even with perfectly reasonable stock, price models. This will
be illustrated in the following example, which deals with the very simple binomial stock
price model.

Example 7.1. Consider a simple binomial stock price model where the “up” factor u =
1.1, the “down” factor d = 0.9, and the riskless interest rate r = 0. The objective here is
to describe an arbitrage opportunity where you start with zero dollars and you are certain
to end up with $1. The probability of an up-move is strictly between 0 and 1; the exact
value is unimportant. But note there is a risk neutral probability measure for this model;
it is the one consistent with equal conditional probabilities for up and down moves over
one period.

The idea will be to use a ‘doubling’ strategy where you start out at time t = 0 borrow-
ing $10, say, investing all of this in the stock. If the stock goes up in the first period, then
your investment becomes $11, so you repay your $10 loan and you take the remaining $1
and run. On the other hand, if the stock goes down, then your stock investment becomes
worth $9; since you owe $10, this puts you $1 in debt. You can “recover” by borrow-
ing enough money to double the initial $10 investment in the stock. In particular, you



236 CHAPTER 7. MODELS WITH INFINITE SAMPLE SPACES

borrow an additional $11, raising the total loan to $21 and making the total investment
in the stock equal to $20. If the stock goes up over the second period, then your stock
investment becomes $22, so you repay your $21 loan and you take the remaining $1 and
run. But if the stock goes down, then your stock investment becomes $18, leaving you
$3 in debt, requiring you to “double-up” at least one more time.

In general, if there is at least one up move during the first t periods, then you will have
realized your desired $1 profit and you will have terminated all borrowing and trading
by time t. On the other hand, if the stock goes down each of the first t periods, then
after 1 periods you will be 1− 2t in debt, you will owe 11(2)t−1− 1 on your loan, and
your current investment in the stock will be worth 9(2)t−1 (check: 1− 2t = 9(2)t−1−
[11(2)tt−1−1]). In this latter case then at time t you will borrow an additional 11(2)t−1

dollars to increase your stock investment to 10(2)t dollars and keep on going.
Now if there is only a finite number T of periods, then with a positive probability

the stock will have gone down every period and you will have ended up 1− 2T dollars
in debt, in which case this would not be an arbitrage opportunity. But with an infinite
number of trading periods, the probability of always going down and thus ending up
in debt is equal to zero. In other words, under the doubling strategy the probability of
ending up with $1 as your final wealth is equal to one. This is an arbitrage opportunity.

So what is the problem? Is our notion of an arbitrage opportunity improper for the
case of an infinite horizon model? It is questionable to talk about being sure of having
a positive wealth infinitely far out in the future when you run the risk of being in debt
at every finite time, but keep in mind that the infinite horizon model can be associated
with a planning horizon of finite clock time, with an infinite number of trading periods
of varying length. With this latter perspective we would be referring to a positive wealth
at a finite distance in the future. Our notion of arbitrage opportunities is not the problem.

The problem with example 7.1 is that the specified trading strategy is unrealistic.
In the first place, there is no lower bound on the amount the investor could be in debt
(this could be 1−2t after t periods), nor is there an upper bound on the amount (which
could be 11(2)t−1−1 dollars after t periods) of the loan. Furthermore, there is no upper
bound on the shares of stock that the investor might need to own (the dollars invested
grow without bound as the price per share drops, so the number of shares owned will
grow without bound as well). These situations are unrealistic from the modeling and
economic points of view.

It is reasonable to make an assumption that would rule out these unrealistic situations.
For example, one could stipulate that the trading strategies (i.e., the number of shares
long or short) are bounded. Or one could stipulate that there is a lower bound on the
wealth of the investor. Assumptions like these will rule out the doubling strategies that
produce arbitrage opportunities. This is the approach I will take.

I now return to the fundamental theorem of asset pricing, which says there exists a risk
neutral probability measure if and only if there are no arbitrage opportunities. In order
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to discuss this, and in view of the preceding discussion, it is necessary to give a careful
definition about arbitrage opportunities in the case of an infinite horizon model (the
definition of the risk neutral probability measure is no different than in the finite horizon
case). A predictable trading strategy H will be said to be admissible if there exists a
scalar m < ∞ such that the time-t wealth Vt ≥ −m for all t (this inequality holds with
probability one; note admissibility rules out doubling strategies). The admissible, self-
financing trading strategy H is said to be an arbitrage opportunity if (recall V ∗

t = Vt/Bt

is the time-t discounted value of the portfolio):

1. V0 = V ∗
0 = 0

2. There exists a random variable V ∗ ∈F such that V ∗
t →V ∗ as t →∞ (that is, P(V ∗

t →
V ∗) = 1)

3. V ∗ ≥ 0

4. E[V ∗] > 0

Thus (1), (3), and (4) are the same as in the finite horizon case, except that here they
involve the discounted wealth V ∗ after an infinite number of trading periods, with V ∗

given in (2).
It is now easy to explain the following:
If there exists a risk neutral probability measure Q, then there are no arbi-
trage opportunities.

(7.14)

To see this, suppose H is an admissible trading strategy with V ∗ as in (2) and with
V ∗

0 = 0. Then just as in the finite horizon case, t → V ∗
t is a martingale under Q, so

EQ[V ∗
t ] = V ∗

0 = 0 for all t. It follows from Fatou’s Lemma (a technical convergence
theorem for sequences of random variables) that EQ[V ∗] ≤ 0, so V ∗ cannot satisfy both
(3) and (4). Thus H cannot be an arbitrage opportunity.

Unfortunately, the converse of (7.14), which together with (7.14) would comprise the
Fundamental Theorem of Asset Pricing, is not true for general infinite horizon models.
This will be illustrated with the following example.

Example 7.2. Consider a securities market model with one risky security S, r = 0, and
a countable sample space Ω = {1,2 . . .}. Set S0 = 1 and, for all t ≥ 1 and all ω ∈Ω, set

St(ω) =

{
(1/2)t , t < ω

(ω2 +2ω +2)(1/2)ω , t ≥ ω

This means that in state ω the price falls by 50 per cent per period for ω−1 consecutive
periods, from time ω − 1 to time ω the price increases by (ω2 + 2ω)(1/2)ω , and from
then on the price is constant. In other words,

∆St(ω) = St(ω)−St−1(ω) =





−(1/2)t , t < ω

(ω2 +2ω)(1/2)ω , t = ω

0, t > ω
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Let Ht denote the number of shares of the risky security held from time t − 1 to
time t. Given the nature of the price process, nothing is lost by restricting attention to
trading strategies where {Ht} is a sequence of real numbers. In order to avoid doubling
strategies, it will also be assumed that the sequences {Ht} are bounded. Of course, the
trading strategies must be self-financing. Hence the admissible trading strategies are
fully described by the initial wealth V0 and the bounded sequence {Ht} of real numbers.

If t < ω , then during period (the portfolio loses (1/2)tHt , in value, whereas if t = ω ,
then the portfolio gains (ω2 + 2ω)(1/2)ωHt . Of course, if t > ω , then the portfolio
remains constant in value, even though the value of Ht might be non-zero. Hence the
time t value of the portfolio under admissible trading strategy (V0,{Ht}) is

Vt(ω) =





V0−
t

∑
s=1

(1/2)sHs, t < ω

V0−
ω−1

∑
s=1

(1/2)sHs +(ω2 +2ω)(1/2)ωHω , t ≥ ω

It is easy to verify that the value process V is bounded below, since the sequence Ht is
required to be bounded.

The absence of arbitrage in this market follows from three factors: the date of the
price increase is unpredictable; the price will be arbitrarily low even after the increase
if ω is sufficiently large; and only bounded trading strategies are allowed. Recall the
definition of an arbitrage opportunity as well as the fact that Vt = V ∗

t since r = 0. If
V0 = 0 and {Ht} is such that Vt →V with V (ω)≥ 0 for all ω , then

−
ω−1

∑
t=1

(1/2)tHt +(ω2 +2ω)(1/2)ωHω ≥ 0, all ω ∈Ω (7.15)

Now suppose for some integer k and some ε > 0 that

k

∑
t=1

(1/2)tHt > ε (7.16)

It follows easily by induction, using (7.15), that

(ω2 +2ω)(1/2)ωHω > ε, all ω > k

But this cannot be true because {Ht} is bounded, so there does not exist any integer k
and ε > 0 such that (7.16) is true. In other words, it must be that

k

∑
t=1

(1/2)tHt ≤ 0, all k ≥ 1 (7.17)

Taking ω = 1 in (7.15) and k = 1 in (7.17), it follows that H1 = 0. More generally, if
H1 = H2 = · · ·= Hk−1 = 0, then (7.15) and (7.17) imply Hk = 0. Thus, by induction, our
candidate for an arbitrage opportunity satisfies Ht = 0 for all t. There cannot exist any
arbitrage opportunities.
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To show there cannot exist any risk neutral probability measures Q, consider what the
risk neutral conditional probabilities must be. Let qt−1 denote the risk neutral conditional
probability of an “up” move from time t− 1 to time t. The corresponding conditional
expectation of ∆St must be zero, that is,

qt−1(t2 +2t)(1/2)t +(1−qt−1)[−(1/2)t ] = 0, all t ≥ 1

This implies
qt−1 = (t +1)−2 all t ≥ 1 (7.18)

Another induction argument shows that the unconditional risk neutral probability Q(ω ≥
t) must therefore equal (t +1)/(2t), which, it should be noted, converges to 1/2 as t →∞.
But for this to be a valid probability measure, it must be that

lim
t→∞

Q(ω ≥ t) = 0

whereas here this limit equals 1/2. Thus there are no probability measures under which
the price process S is a martingale.

While example 7.2 is a discouraging result, it is not the end of the world. In the first
place, while some might argue that the security model is a reasonable one from the eco-
nomic point of view, others would argue that it is not. Modest variations on the definition
of an arbitrage opportunity could lead to the identification of undesirable trading strate-
gies.2 These variations can become very technical, so they will not be pursued here.
In the second place, we had to work quite hard to come up with an example like this.
Such examples are rare. In practice, risk neutral probability measures invariably exist
for realistic models of securities markets, even if there is an infinite number of trading
periods.

Exercise 7.3. Show in detail that (7.15) and (7.16) imply (ω2 + 2ω)(1/2)ωHω > ε for
all ε > k.

Exercise 7.4. Show in detail that (7.15) and (7.17) imply Ht = 0 for all t = 0.

Exercise 7.5. Show in detail that (7.18) implies Q(ω ≥ t) = (t +1)/(2t).

2See Schachermayer (1994) for a comprehensive, advanced study of this subject.
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